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Robust Scheduling Strategies for Collaborative Human-UAV Missions
Jeffrey R. Peters and Luca F. Bertuccelli

Abstract— Resource allocation in collaborative human-UAV
missions has become an important research area in recent
years. Traditional deterministic strategies for task scheduling,
such as job-shop schemes, can lead to poor performance,
since these strategies fail to account for human cognitive
requirements or behavioral uncertainty. In response, we present
a flexible mixed-integer linear programming framework that
can potentially address both of these issues in finite horizon
scheduling applications. Specifically, we illustrate how cognitive
workload constraints can be formulated as a mixed-integer lin-
ear program, and introduce robustness to uncertain processing
times through the use of scenarios. We explore the modularity
and utility of this simple framework by introducing additional
layers of complexity, including receding horizon planning and
adaptive estimation. Throughout the discussion, we use simu-
lation studies to discuss the functionality of these algorithms,
as well as various issues regarding practical implementation.

I. INTRODUCTION

In futuristic scenarios involving collaboration between hu-
mans and unmanned aerial vehicles (UAVs), human operators
are often charged with the sequential processing of tasks
that are generated by their UAV partners, e.g. [1]. Proper
scheduling of these tasks can have a profound impact on
both operator and mission performance, since key mission
planning decisions often depend on the operator’s ability
to process tasks quickly and accurately [2]. These types
of discrete scheduling problems are NP-hard in the general
case [3]. Despite this, the traditional deterministic scheduling
problem and its variations have been studied for many years
in the context of job-shop applications (e.g., [4]), and high-
quality heuristic methods exist for constructing solutions.
Common strategies involve integer programming [5], dis-
junctive graphs [6], and various other heuristics [7]. The
quality of deterministic scheduling solutions, however, dete-
riorates quickly in the presence of uncertainty [8]. As such,
schemes designed for deterministic problems are usually
ill-suited for human-centered systems, which often involve
significant behavioral variance. For example, in the context
of visual search, virtually all models of human cognitive pro-
cessing are stochastic, and thus task processing times carry
significant uncertainty. Although some strategies do exist for
discrete scheduling or robust optimization in uncertain or
dynamic environments (e.g., [9], [10]), existing methods fail
to account for crucial elements of human information pro-
cessing. Indeed, factors such as cognitive workload, fatigue,
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memory retention, among others, are not generally taken into
account in typical dynamic or robust scheduling, although
they can easily affect operator performance in persistent task
execution missions if not properly mediated [11].

In what follows, we develop a mixed-integer linear pro-
gram (MILP) framework for constructing solutions to finite
horizon task scheduling problems. Our method maximizes
the operator’s achieved reward in the presence of processing
time uncertainty, while simultaneously mediating operator
cognitive workload by penalizing schedules that are likely
to cause workload levels to fall outside of a pre-specified
regime. We focus on cognitive workload, as opposed to other
exogenous human factors, since it has well-established trends
and links to performance that can feasibly be exploited by
mission planners [12]. After establishing the base framework,
we illustrate how additional layers of complexity can be
added in order to both boost performance and address more
general situations. Our work is largely an extension of [13],
and is intended to illustrate the practical utility of MILP
frameworks in the context of human supervisory control [14].

Specifically, our contributions are as follows. First, we
present an MILP framework for the scheduling problem that
can incorporate workload considerations for simple, trend-
based workload models. Then, we illustrate how robustness
to task processing time uncertainty can be added into this
formulation through the use of scenarios. We show how this
strategy allows flexibility in choosing both the desired degree
of robustness and the degree that workload is taken into
account. We then illustrate how general performance can be
improved through the use of a receding horizon approach.
Finally, we extend our problem setup to allow for additional
uncertainty with regard to task processing time distributions,
and illustrate how straightforward estimation schemes can be
added to the established receding horizon approach.

II. SCHEDULING UNDER WORKLOAD CONSTRAINTS

A. Main Scheduling Objective
Consider N ∈ N heterogenous tasks stacked in a queue

awaiting the attention of a single operator. Each task Ti,
i ∈ {1, . . . , N}, has 1) an associated processing time ti ∈
R>0, which defines how long the task will take to complete,
2) an availability time si ∈ R>0, which defines the global
time at which the task becomes available to the operator,
and 3) an associated reward ri ∈ R≥0, which is given
upon successful completion. We consider an “all or nothing”
reward distribution scheme, in which the operator receives
the full reward ri if the task is completed, and no reward
otherwise, i.e., there is no pre-emption. Further, we assume
that the reward is only obtained if the task is completed
within a pre-specified time horizon TH ∈ R>0.
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We seek a schedule, i.e., ordered sequence of tasks, that
maximizes the total reward obtained, provided that the oper-
ator starts each task in the sequence at the minimum possible
time, i.e., the maximum of the previous task completion time
(or t = 0 for the first task) and the appropriate availability
constraint. Note that, with this assumption, task availability
constraints {si} are never violated. Formally, a schedule is
a sequence S := {Tσ(1), Tσ(2), . . . , Tσ(|S|)}, where |S| ≤
N and σ : {1, . . . , N} → {1, . . . , N} is some bijective
mapping. Let S denote the set of all possible schedules.
Assuming the operator processes tasks sequentially, starting
each task at the minimum possible time, we seek S∗ ∈ S
that maximizes the total reward obtained within time TH .

B. Workload Constraints

The effectiveness of a given schedule also hinges upon
the cognitive state of the operator. Therefore, it is desirable
to construct a schedule that allows the operator’s cognitive
state to remain in a regime that is most amenable to high
levels of performance. Here, we focus our attention specifi-
cally on moderating cognitive workload. Formally, cognitive
workload is the extent to which a task or set of tasks places a
demand on the operator’s cognitive resources [15]. Perceived
workload is, in turn, closely related to the concept of
operator stress, which has direct links to performance [11].
These links are typically modeled through classical laws such
as the Yerkes-Dodson law, which says that moderate levels of
operator stress are the most beneficial [16]. Cognitive work-
load is often used as a means of mediating operator stress
with the hope of achieving greater performance, e.g., [12].

Although perceived cognitive workload is generally sub-
jective, there are a number of objective, quantifiable means
that have been used to capture high-level dynamic evolution
with some success, e.g., utilization ratio [17], neurophysi-
ological metrics [18], among others. We choose to model
workload via an incremental, discrete process, which is
driven by the task processing order and processing times.
This model is based on the simple observation that, in
most situations, when operators are busy (idle), their work-
load level increases (decreases). To capture these simple
dynamics, to each task Ti, we associate an increment δwi,
which represents the amount that the operator’s cognitive
workload increases when working on Ti for time ti. Further,
we assume that workload decreases when the operator is
idle, proportional to idle time. With this model, we seek to
solve the nominal scheduling problem under the additional
constraint that, if possible, the operator’s workload must
remain within a desired regime [w,w] ⊂ R at any point
0 ≤ t ≤ TH . Although simplistic, this model captures the
essence of workload evolution during task processing. In-
deed, many widely accepted workload evolution models are
deterministic processes that augment and degrade workload
during busy and idle times, respectively (e.g., [17]). Further,
in the sequel, we treat processing times as known parameters
for optimization (including the scenario-based formulation
of Section III-A). Therefore, if desired, the parameters δwi
can be systematically chosen to reflect more sophisticated

dynamics. For example, if f : R≥0 → R is a function
that relates time to the amount that workload increments
when the operator engages in a general task, then we can set
δwi = f(ti) for all i ∈ {1, . . . , N}. A similar statement can
be made regarding workload decrements during idle time.

Despite this flexibility, the incremental workload model
considered herein cannot account for dynamics in which
increment or decrement magnitudes are dependent upon
initial conditions, since the task processing order is unknown
a priori. Recall, however, that for a given operator, workload
evolution will usually be a subjective experience, and thus
fine level models may be ill-suited if they are derived from
aggregate data. Therefore, in constructing general schemes
for use with many different operators, simplistic workload
evolution dynamics may be preferable to finer level models.
If, however, the model is to be tuned to a specific operator
or group of operators, or more precise real-time data can
be leveraged (e.g., neurophysiological cues [19]), then alter-
native models may be preferable and the MILP framework
presented herein may not be sufficient.

C. MILP Formulation

We now formulate the finite horizon scheduling problem
as an MILP. The primary decision variables are binary
indicators xi,j ∈ {0, 1}, which specify whether or not task
Ti should be executed in the j-th time slot of the output
sequence (Fig. 1). Each task Ti is fully specified by the 4-
tuple (ti, si, ri, δwi). In addition to T1, . . . , TN , we introduce
one additional null-task TN+1 to represent an operator idle
time. Specifically, we define TN+1 := (ζ, 0, 0,−δw0), where
δw0 > 0 is a constant and ζ ∈ R≥0 is the (fixed) task length.
The null-task is the only task that the operator is allowed to
execute more than once. As such, the output of our pro-
posed method is an augmented schedule, which is formally
defined as a sequence S = {Tσ(1), Tσ(2), . . . , Tσ(|S|)}, where
M ≥ |S| ∈ N with M being a pre-determined parameter
representing the maximum number of tasks that can appear
in the sequence, and σ : {1, . . . ,M} → {1, . . . , N} is some
mapping satisfying |σ−1({i})| ≤ 1 for all i ∈ {1, . . . , N}.
This differs slightly from a schedule1 in that the null-task can
appear more than once, and thus M can exceed the number
of non-null tasks, N . To guarantee reasonable outputs, it
is necessary to pick M sufficiently large, i.e., to consider
sequences that can incorporate a sufficiently large number
of terms. Setting M = dTH/ζe + N is sufficient, where
d·e : R → Z is the standard ceiling operator. With the
goal of capturing workload evolution within an MILP, we
augment the set of tasks to be processed with the newly
created null task, and define T := {T1, . . . , TN , TN+1}.
Workload is then incorporated as an explicit variable that
satisfies appropriate constraints. As such, the scheduling
problem reduces to the issue of finding the optimal aug-
mented schedule based on the set T . Consequently, the MILP
takes the form (1). In (1), the optimization is performed
over the decision variables xi,j , Cj , Bj , Wj , β, and γ,

1The difference is not crucial to most of the discussion, however, so we
reserve the qualifier “augmented” for cases where a distinction is required.
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Fig. 1. An illustration of the MILP structure, which assumes a set of tasks
T , containing N non-null tasks and one null task, and a finite number of
“slots,” M , defining the maximum length of any output augmented schedule.
Solutions are constructed by matching tasks from the pool with available
output slots. The null-task is the only task that can be used more than once.

where i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, and all other
parameters are fixed. This formulation provides a natural
extension of [13], which considers an analogous problem
in the the absence of workload constraints.

maximize
xi,j∈{0,1}

∑
i

∑
j

rixi,j − pββ − pγγ,

subject to
N+1∑
i=1

xi,j ≤ 1, ∀j ∈ {1, . . . ,M},

M∑
j=1

xi,j ≤ 1, ∀i ∈ {1, . . . , N},

N+1∑
i=1

xi,jsi ≤ Bj , ∀j ∈ {1, . . . ,M},

N+1∑
i=1

xi,jti = Cj −Bj , ∀j ∈ {1, . . . ,M},

Cj ≤ TH , ∀j ∈ {1, . . . ,M},
0 ≤ Bj − Cj−1 ≤ ζ, ∀j ∈ {2, . . . ,M},
0 ≤ B1 ≤ ζ,

W0 +
∑
i

δw1 xi,1 = W1,

Wj−1 +
∑
i

δwi xi,j = Wj , ∀j ∈ {2, . . . ,M},

Wj − w ≤ β, ∀j ∈ {1, . . . ,M},
w −Wj ≤ γ, ∀j ∈ {1, . . . ,M},
β, γ ≥ 0.

(1)
In (1), the first set of constraints ensures that the solution to
the MILP corresponds to a reasonable schedule by ensuring
that each time slot, with respect to the sequence order,
can contain at most one task. Similarly, the second set of
constraints guarantees that each task is only assigned to at
most a single location in the sequence, with the exception of
the null task. The third through the seventh sets of constraints
relate to task availability, start times, and completion times.
Here, Bj and Cj denote the start and the completion time,

respectively, of the j-th task in the sequence. The third set
of constraints ensures that no task is started before time si.
The fourth set of constraints guarantees that the start and
completion times are defined in a reasonable way. The fifth
constraint specifies that rewards are only attained for tasks
completed within time TH . The sixth and seventh constraints
provide a two-fold contribution. First, the lower bounds
specify that a no task can begin before the previous task
ends. The upper bounds arise from discretization of operator
idle time into intervals of length ζ, and are used to limit
the number of “gaps” that are present in the output schedule
(Remark 1). The remaining constraints deal with moderating
workload. By our incremental definition, the workload level
after the j-th task Wj is precisely the workload level Wj−1
plus the appropriate increment. This is captured by the eighth
and ninth sets of constraints. Here, W0 denotes the (known)
initial workload level. Since we have included the null-task in
the pool of available tasks, this set of constraints also defines
the appropriate change in workload due to idle time. The
final sets of constraints require workload levels to remain
within the pre-specified bounds, buffered by the decision
variables β and γ. The variables β and γ enter into the
objective function as penalties for violating the workload
bounds, proportional to the parameters pβ , pγ > 0. Enforcing
the workload bounds as soft, rather than strict, constraints, is
beneficial for a variety of reasons. First, exact bounds w,w
are usually not known beforehand, and thus enforcement of a
strict bound may be ill-advised. Second, the variables pβ and
pγ provide a means of tuning the enforcement of workload
bounds. Indeed, higher values of pβ and pγ indicate larger
penalties for bound violations. Finally, soft enforcement
of workload bounds ensures feasibility of at least 1 non-
degenerate solution, assuming that TH is sufficiently long.
This discussion yields the following result.

Lemma 1 (Feasibility): The MILP (1) is feasible. If there
exists i ∈ {1, . . . , N} such that ti + si < TH , then
there exists a non-degenerate feasible point, i.e., a point
corresponding to an output augmented schedule containing
at least 1 task.

Proof: The zero vector is feasible. If there exists i such
that ti < TH , then we construct a decision vector x̂ such that
xi,1 = 1, all other binary decision variables are zero, and γ =
β = C, where C > max{|W0 + THδwi|, |W0 − THδw0|}.
Substitution verifies that x̂ is feasible.

Most formulations of optimal scheduling problems are NP-
hard. The MILP (1) presents similar difficulties since it is
non-convex and combinatorial in nature; however, effective
methods exist for finding high quality solutions, including
rounding schemes, branch and bound search strategies, and
genetic algorithms [20]. Such heuristics are included in a
variety of software packages, including the Matlab optimiza-
tion toolbox [21] and the cvx software package [22], [23].
In many cases, obtaining reasonable solutions from heuristic
solvers is sufficient from a practical standpoint, even though
solutions may not be strict global (or even local) optima. The
formulation (1) may provide a viable option in such cases.

Remark 1 (Null-Task): Recall that the task pool contains
a “null-task” of length ζ. Once a solution to (1) is found and



4

a schedule is extracted, tasks are sequentially executed. Due
to task availability, however, it may be impossible for the op-
erator to start a new task immediately after the previous task
is completed. Heuristic solvers may also introduce delays
between successive null-tasks. As such, if the time profile of
task execution is mapped over TH , there may be “gaps”, i.e.,
times when no task (even a null-task) is executed. Workload
effects due to these gaps are not explicitly considered in (1).
However, the sixth and seventh constraints imply that the
maximum gap length shrinks to 0 as ζ → 0, and thus
workload effects due to gaps become negligible for small
ζ. Of course, shrinking ζ increases required computation,
and thus a tradeoff must be considered.

III. ROBUST SCHEDULING STRATEGIES

A. Scenario-Based Robust Planning as an MILP

We now focus on designing schemes that are robust
to processing time uncertainty. As such, we assume that,
for each Ti, the processing time ti is a random variable,
distributed according to a probability density function fi.
We assume for now that each distribution fi is known with
complete certainty. Generally, the choice of appropriate func-
tion fi is task-dependent. However, in many cases, standard
distributions, such as log-normal distributions, are effective
in the context of collaborative human-UAV missions [24].

We adopt a scenario-based approach to incorporating
uncertainty. In this approach, the processing time distribution
of each task is sampled to generate a set of scenarios, or
candidate processing times. These scenarios are then used to
find a solution that remains feasible regardless of the scenario
that is chosen to represent the true processing times. If
underlying distributions are accurate, then large numbers of
scenarios can generate schedules that are robust to particular
realizations of the processing time variables. That is, by
following the schedule obtained, a wide variety of processing
time realizations will still produce rewards that are above the
predicted lower bound. Formally, for each Ti, we generate
a set of Q ∈ N times, {t1i , t2i , . . . , t

Q
i }, where tmi ∼ fi for

all m. For each m ∈ {1, . . . , Q}, the set {tm1 , . . . , tmN , ζ}
defines a scenario, as it represents a possible realization of
task processing times (null task included). For generality, we
also assume scenario-dependent workload increments and let
δwmi represent the increment associated with task Ti in the
m-th scenario. Given the set of Q scenarios, we expand (1)
through the additional requirement that any constraint must
be satisfied for all of the generated scenarios. To do so,
to each m we associate a distinct set of decision variables
{Bmj }, {Cmj }, and {Wm

j }, where j ∈ {1, . . . ,m}, yet we
retain a single set of binary indicators {xi,j} to serve all
scenarios. Thus, starting times, ending times, and workload
values are time or scenario-dependent, while the resulting
schedule is independent of these parameters. This allows
for the unambiguous extraction of an augmented schedule
from the MILP solution, which will then (ideally) be robust
to uncertainty in processing times. The robust MILP is
expressed in (2). Here, the optimization is over the decision
variables α, β, γ, xi,j , Cmj , Bmj , and Wm

j and it is assumed

that i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, and m ∈ {1, . . . , Q}
unless otherwise stated.

maximize
xi,j∈{0,1}

∑
i

∑
j

rixi,j − pαα− pββ − pγγ,

subject to
N+1∑
i=1

xi,j ≤ 1, ∀j,

M∑
j=1

xi,j ≤ 1, ∀i,

N+1∑
i=1

xi,jsi ≤ Bmj , ∀j,m,

N+1∑
i=1

xi,jt
m
i = Cmj −Bmj , ∀j,m,

Cmj − TH ≤ α, ∀j,m,
0 ≤ Bmj − Cmj−1 ≤ ζ, ∀j,m,
0 ≤ Bm1 ≤ ζ, ∀m,

W0 +
∑
i

δwm1 xi,1 = Wm
1 , ∀m,

Wm
j−1 +

∑
i

δwmi xi,j = Wm
j , ∀j 6= 1,m

Wm
j − w ≤ β, ∀j,m,

w −Wm
j ≤ γ, ∀j,m,

α, β, γ ≥ 0.
(2)

In addition to the differences already noted, (2) differs
from (1) in that there is an additional decision variable α,
which serves as a bound on the amount that task completion
times can exceed the horizon TH . The variable α is factored
into the objective function by means of a linear penalty.
This “soft” enforcement of the time horizon constraint is
advantageous since it provides an additional “tuning” param-
eter for controlling system robustness. Indeed, by increasing
the value of pα, more penalty is incurred for generating
schedules whose completion times are likely to exceed TH .
The parameter α also serves to prevent the optimization from
returning degenerate solutions in the case of highly skewed
processing time distributions. This discussion readily leads
to the following lemma, whose proof is immediate.

Lemma 2: There exists a non-degenerate solution to (2).
Fig. 2 shows a summary of scheduling solutions, calcu-

lated via (2), for a sample mission with 10 tasks, TH =
30 (dimensionless units), and log-normally distributed task
processing times. Here, we choose pα = 10, pβ = pγ = 15,
w = 0.3, w = 0.7, and W0 = 0.5. Fig. 2(a) portrays the
problem setup using the bars in the top portion of the figure.
For each Ti, the appropriate bar starts at time si, and extends
for a length corresponding to the expected execution time.
The number inside the bar represents the reward ri. The bars
in the lower portion of the plot represent a simulated task
execution instance for each scenario condition, based on the
solution to (2). The start time and length of the bar represent
the time that the task was started and the task duration
respectively, while the number inside the bar represents the
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Fig. 2. Simulated task execution using schedules produced via (2) for a sample mission with N = 10, TH = 30. Plot (a) shows a pictorial mission
summary and the resultant simulated solutions, while (b) shows the corresponding workload evolution (note that the 5 and 10 scenario curves are identical).

task index, with “R” indicating a null-task. Specifically, task
execution was simulated as follows. First, “actual” task exe-
cution times were sampled from the appropriate distributions.
Then, for each condition, scenarios were generated using
Monte-Carlo sampling, and (2) was solved using Matlab’s
Intlinprog function. Given the resultant schedule, task
execution was simulated by assuming the operator processes
each task sequentially, with each having a duration defined
by the “actual” processing time. Each task was started at
the earliest possible time (the maximum of the previous task
completion time and the availability constraint), and tasks
were only included in the lower portion of Fig. 2(a) if its
simulated completion time was less than TH . Note that all
task executions satisfy the availability constraints, but their
actual duration differs from the expected duration due to
uncertainty in processing times. Fig. 2(b) shows the evolution
of workload corresponding to the simulated scenario in
Fig. 2(a). Here, a linear workload model is considered: if
t ∈ [Cj−1, Bj ], the workload W (t) at time t is

W (t) =

{
min{1,Wj−1 + 0.05t} , if Tj is non-null
max(0,Wj−1 − 0.05t} , otherwise.

We choose to constrain workload values to between 0 and 1
both for modeling purposes, and because this normalization
arises naturally in common models. For example, if workload
were correlated with utilization, i.e., the fraction of recent
time that the operator was active, then this normalization is
necessary [17]. In a priori planning, this cap is not taken
into account by the optimization, and thus it is assumed
that δwmi := ±0.05tmi , where the sign is dependent upon
whether the task under consideration is a null-task. Note that
in Fig. 2(b), that as the number of scenarios increases, the
workload does not exceed the specified bounds.

Fig. 3 illustrates the effects of altering workload bounds
on achieved performance. The plot was generated by the fol-
lowing procedure. First, a task set was generated, parameters
TH = 30, W0 = 0.5, and pα = 10 were initialized, and a set
of 10 scenarios were generated. Then, 10 simulations runs
were conducted, where in each run, 1) “actual” task process-
ing times were sampled from the appropriate distributions, 2)

a schedule was created using (2) for each set of w,w, pβ , and
pγ values (“No Workload” corresponds to pβ = pγ = 0, i.e.,
no penalty was assessed for exceeding workload bounds),
3) operator task execution was simulated for each condition
using the resulting schedule and “actual” task times in the
same manner as that used to generate Fig. 2(a), and 4)
the achieved nominal reward was recorded, i.e., the sum
of the ri’s for tasks that were executed before time TH .
Fig. 3(a) shows the mean and standard deviation of the
rewards obtained for each parameter condition, and Fig. 3(b)
shows the maximum amount that workload levels exceeded
the upper bound during task execution. The lower workload
bound was only violated by a small amount in all conditions,
and thus we omit this result. Note that both the obtained
reward and workload bound violations decrease as pβ and pγ
are increased, but the reward increases and bound violations
decrease as w − w widens. Even though nominal rewards
ri do not have an explicit dependence on workload levels,
the MILP (2) does assesses a linear penalty to workload
bound violations. Thus, the formulation (2) can be viewed
as a scalarization of a multi-objective optimization, whose
goal is to balance nominal reward achieved with workload
violations. Therefore, it is implicitly assumed that workload
levels either directly or indirectly influence mission success.
and thus it may be useful to enforce tighter workload
constraints at the expense of lower nominal reward.

Remark 2 (Scenario-Based Robust Optimization): Many
schemes exist for solving uncertain optimization problems.
In particular, the study of robust optimization provides
tools for finding solutions with guaranteed worst-case
performance in problems with bounded uncertainty [10].
Scenario-based approaches to handling uncertainty can,
in some sense, be viewed as “naive,” since they rely
on constraint set expansion through random sampling.
Despite this, scenario-based approaches function well
in a variety of applications due to their simplicity and
effectiveness. We adopt such an approach for the following
reasons: First, scenario-based optimization is simple and
intuitive, making it attractive to many practitioners. Second,
most approaches to robust optimization rely on bounded
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Fig. 3. An illustration of the effects of altering the parameters w, w, pβ and pγ for a sample mission involving 10 tasks and a horizon TH = 30. In (a),
the nominal reward obtained is plotted as a function of increasing pβ and pγ , while (b) shows the maximum amount that the upper workload bound was
violated for the corresponding experimental conditions. The lower workload bound violations were very small, and thus we omit this result. The absence
of standard deviation bars indicates that there was no deviation in the results for the condition in question.

uncertainty sets, or approximations that enforce artificial
bounds. Scenario-based approaches do not require such
bounds. Third, scenario-based approaches allow designers
to easily tune solutions to achieve a desired degree of
robustness. Finally, given “regularly” shaped uncertainty
distributions, scenario-based approaches usually provide
reasonable performance with a modest number of scenarios.

B. Receding Horizon Robust Scheduling

Scenario-based robust scheduling strategies can generate
reliable lower bounds on system performance. That is, using
a reasonable number of scenarios and assuming that chosen
processing time distributions are accurate, the MILP (2)
will produce a lower reward bound that will likely hold
true in actuality. However, solutions produced by scenario-
based optimizations are often very conservative, particularly
when uncertain parameter distributions are highly skewed or
have high variance. For example, if visual search times are
modeled via log-normal distribution, then robust scheduling
strategies would most likely be driven by search times
occurring in the tail, which are unlikely to occur in actuality.
Clearly, following a robust schedule that is calculated a
priori does not take advantage of all available information
during task execution, and performance can potentially be
improved by re-planning the mission in an online fashion
as realizations of task processing times become known. This
observation suggests a receding horizon robust scheduling
scheme, which calculates new, robust schedules after each
task is processed. Such a scheme is described as follows.

1) collect the tasks to be processed in a set T ,
2) formulate and solve the scenario-based robust schedul-

ing problem as in Section III-A,
3) execute the first task in the resultant schedule, and

observe the processing time t,
4) if the executed task is a not a null-task: remove it from

the set T , subtract t from all remaining task availability
constraints, and redefine TH = TH − t, and

5) repeat steps 2-4 until T = ∅ or TH ≤ 0.
The receding horizon scheme re-plans each time the un-
certainty set is decreased, which, in the robust planning
case, will generally lead to better performance. The obvious
drawback to this strategy is that it requires an MILP to be
solved after each task is executed; thus, total computation
time is significantly increased. Therefore, there is a tradeoff
between solution quality and computation time that will need
to be assessed on a case by case basis.

Remark 3 (Computation Time): Receding horizon robust
scheduling schemes may be computationally intensive in
their raw form. However, a number of steps can be taken
to adjust the schemes to fit them into a desired computa-
tional framework. The simplest amendment to the presented
algorithm is a reduction of the number of scenarios. This
reduces complexity at the expense of robustness. A more
sophisticated strategy involves selective re-planning only
when a certain criterion is met, as opposed to re-planning
after every task. For example, we could choose to re-plan
only if the observed execution time is significantly different
from any of the processing times predicted by the scenarios.
A thorough treatment of such issues is left to future work.

C. Adaptive Receding Horizon Robust Scheduling

Thus far, it has been assumed that task processing time
distributions are known exactly. In many applications, this is
not the case, and thus it may be necessary to estimate them
during the mission. In this section, we illustrate one such
estimation scheme that can be implemented in conjunction
with the receding horizon approach of Section III-B. Build-
ing on the formulation of the previous sections, suppose each
task Ti is generated by one of P ∈ N sources, e.g., different
regions of interest, and each such task can be of T ∈ N
possible types, e.g., easy or hard. Assuming independent
tasks, suppose that associated to each source p ∈ {1, . . . , P},
there exists an unknown, static probability mass function
gp : {1, . . . , T} → [0, 1] that captures the likelihood that a
task originating from source p is of type `, i.e., the probability
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of any single task that is generated by source p being of type
` is gp(`). Finally, to each type `, we associate an unknown,
static probability density function f` : R≥0 → R≥0, which
captures the distribution of possible processing times. The
distributions f` are region independent. With these additions,
each task Ti consists of a 6-tuple Ti = (ti, si, ri, δwi, φi, τi),
where si, ri, and δwi are defined as before, φi ∈ {1, . . . , P}
represents the source that generated the task (known), τi ∼
gφi is the task type (unknown), and ti ∼ fτi is the task
processing time (unknown).

The underlying distributions associated with both sources
and types are unknown to the operator. For each source p
and each type `, let ĝp and f̂` denote estimates of the re-
spective functions. The adaptive receding horizon scheduling
approach updates ĝp and f̂` as the operator processes tasks,
and the new estimates are used for subsequent scheduling.
The algorithm evolves as follows:

1) collect the tasks to be processed in a set T ,
2) generate new scenarios using {ĝp} and {f̂`},
3) formulate and solve the scheduling problem (2),
4) execute the first task Ti in the resulting sequence and

observe τi and ti,
5) if task Ti is non-null: update the estimates ĝφi , f̂τi and

remove Ti from T ,
6) subtract ti from the remaining task availability con-

straints, redefine TH = TH − ti, and
7) repeat steps 2-6 until T = ∅ or TH ≤ 0.

Step 2 in the process above requires explanation. Indeed, the
operator does not know the type of any unprocessed task, and
thus a decision is necessary about which distributions should
be sampled to generate scenarios. Many choices are reason-
able, e.g., a “maximum likelihood” method, where each time
tmi is selected by sampling the distribution fτ∗

i
, where τ∗i :=

arg max` ĝφi
(`). That is, each scenario is sampled from the

processing time distribution corresponding to the most likely
type for task Ti, according to ĝφi

. We exploit the “maximum
likelihood” sampling process in the remaining simulations.
With step 2 established, it only remains to clarify the update
procedure for the distributions ĝp and f̂` in step 5. The
appropriate update method will generally be governed by
the problem assumptions. However, for illustrative purposes,
we assume that each element in the set {f`}`∈{1,...,T} :=
(µ`,Σ`) is log-normally distributed, where µ`,Σ` are the
standard log-normal distribution parameters. We also assume
that prior information is available regarding each distribution
gp and f` in the form of a set of samples, accumulated
prior to the current scheduling mission. Upon completion
of task Ti, the distributions ĝφi

and f̂τi are then updated by
calculating the standard maximum likelihood estimates.

Fig. 4 presents a comparison of various solution methods
for a sample mission involving 10 tasks, 2 task sources, and
3 task types. Here, there is uncertainty in task processing
times, as well as in each task and type distribution gp and f`,
respectively. Each distribution gp was generated randomly,
while the set {f` := (µ`,Σ`)} was created so that the me-
dians {eµ`} were evenly spaced in [0, 0.5TH ], and Σ` = Σˆ̀

for all `, ˆ̀∈ {1, . . . , T}. We assumed that 10 prior samples

were available a priori from each distribution gp, and 5 prior
samples were available from each distribution f`. The prior
samples were generated with the appropriate “true” distribu-
tion. The distributions ĝp and f̂` were initialized via standard
maximum likelihood estimates. For the adaptive solution
method, the estimates ĝp and f̂` were updated after each
task execution. In all cases, scenarios were generated using
the “maximum likelihood” scheme and workload evolved as
in previous examples. We chose pα = 10, pβ = pγ = 15,
W0 = 0.5, w = 0.3, w = 0.7, and TH = 30. Fig. 4(a)
shows the rewards obtained, i.e., the sum of the rewards ri of
executed tasks, averaged over 10 simulation runs. The same
setup and prior information was used in each run, but each
had different realizations of “actual” processing times. For
each run, identical scenarios were used across experimental
conditions, i.e., solution methodologies. Fig. 4(b) shows the
maximum upper workload bound violation for each run (the
lower bound was rarely violated, so we omit this case). Large
variances in both plots is due to the high uncertainty in the
underlying setup. As expected, the no workload condition
produced significantly higher rewards than other methods.
The methods considering workload performed similarly to
one another in terms of nominal reward, particularly in the 15
scenario case; however, the a priori method performed much
poorer than the other robust schemes in terms of workload
bound violation. The adaptive scheme did not quantitatively
differentiate from the non-adaptive receding horizon scheme
in terms of either metric. However, a qualitative downward
trend began to emerge in workload bound violation (and
bound violation variance) for the adaptive scheme as the
number of scenarios increased. We hypothesize that this
trend would become more pronounced in larger problems
where more estimation update steps are available, and thus
the adaptive scheme may be superior (in a multi-objective
sense) to the non-adaptive scheme in these cases. We leave
further investigation of this claim to future work.

IV. CONCLUSION

For human-UAV collaborative missions, it is crucial to
develop task scheduling methodologies that 1) consider hu-
man cognitive requirements, 2) are robust to uncertainty, 3)
can incorporate various design goals, and 4) are practically
implementable. The presented MILP framework can poten-
tially accomplish all of these goals. Indeed, this scheme
can incorporate cognitive workload, introduce robustness,
and expand to handle additional layers of complexity, while
still staying within a straightforward optimization frame-
work. Future work should focus on verifying the utility
of these scheduling frameworks through human subjects
experiments. In particular, these studies should seek to 1)
verify that performance actually does, in fact, improve with
the introduction of such scheduling systems, 2) investigate
whether simple cognitive workload models are sufficient
for these applications or if more elaborate models should
be considered, and 3) identify any unforeseen practical or
performance issues. Additional theoretical work can then be
done to incorporate further layers of complexity and tailor
system designs to human-UAV applications.
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Fig. 4. A comparison of performance of different solution methodologies in a sample mission with 10 tasks,TH = 30 (dimensionless units), and uncertain
processing times, as well as uncertain source and processing time distributions. In (a), the obtained nominal reward is plotted as a function of the scenarios
used. In (b), the maximum amount that the workload level exceeded the bound w is plotted, again as a function of the number of scenarios.
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