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In future human-UAV collaborative missions, especially those involving multiple

human operators, the issue of resource allocation will be a crucial component to system

success. Traditional deterministic strategies for task allocation and scheduling, such

as those designed for job-shop applications, can often lead to poor performance in

human-centered systems, since these strategies fail to account for operator cognitive

requirements or for the large amounts of uncertainty in human behavior. In light of

this, we present a flexible framework that can potentially address both of these issues

in finite horizon scheduling applications involving multiple operators. Specifically, we

illustrate how operator task load constraints can be formulated as a part of a mixed-

integer linear program scheduling framework, which also incorporates robustness to

uncertain processing times through the use of scenarios. We then explore the utility

and modularity of this framework through the introduction of adaptive components

that can further mitigate uncertainty and potentially boost performance. Finally,

we propose a heuristic, auction-based strategy for task allocation in order to reduce
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computation time to reasonable levels. Throughout our discussion, we use numerical

examples to discuss the functionality of these algorithms, as well as discuss various

considerations for future practical implementation.

Nomenclature

Mathematical Operators

dae The least integral upper bound of a ∈ R, i.e., dae := min{b ∈ Z : b ≥ a}

tAi=1Ai Disjoint union of the sets Ai, i.e., tAi=1Ai := {(a, i) : i ∈ {1, . . . , A}, a ∈ Ai}

Indices

K The number of operators

N The number of (non-null) tasks

M The number of task slots

Q The number of scenarios

P The number of sources (Section III B)

T The number of task types (Section III B)

Parameters

w,w Lower and upper task load bounds

ζ The length of the null-task

TH The (finite) time horizon

pα A MILP parameter used to penalize schedules that are predicted to exceed TH

pβ , pγ MILP parameters used to penalize schedules that are predicted to violate task load bounds

Task Parameters

T The set of tasks in the task pool (including the null-task), i.e., T := {Ti}i∈{1,...,N+1}

δwi The task load increment associated with performing task Ti
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ri The reward obtained upon successful completion of task Ti

si The (global) time at which the i-th task becomes available

tmi The processing time of task Ti according to the m-th scenario

φi The source of task Ti (Section III B)

τi The type of task Ti (Section III B)

Optimization and Assignment Variables

xi,j,k Binary decision variable; indicates if Ti is performed in the j-th slot of operator k’s sequence

W0,k Operator k’s initial task load

α, β, γ Decision variables that quantify the amount that horizon and task load bounds are exceeded.

Bmj,k The start time of the j-th task in operator k’s sequence in the m-th scenario

Cmj,k The completion time of the j-th task in operator k’s sequence in the m-th scenario

Wm
j,k Operator k’s task load level after processing the j-th task in the sequence in them-th scenario

λ Discount parameter (contained in the set [0, 1]) used in heuristic task assignment (Section IV)

εi, εi, εi Process variables used in the heuristic assignment of Section IV

πi The score assigned to Ti in the heuristic assignment of Section IV

I. Introduction

In futuristic mission scenarios involving collaboration between humans and unmanned aerial

vehicles (UAVs), human operators are often charged with sequential processing of tasks that are

generated by their UAV partners. In fact, in many cases, there is not one, but many human

operators that supervise a single UAV or team of UAVs. For example, the multi-sensor system

Gorgon Stare utilizes a team of intelligence analysts, distributed across various workstations, to

process large databases of imagery generated by unmanned vehicles [1]. Proper scheduling of the

tasks generated by UAVs in supervisory missions can have a profound impact on both operator and

mission performance, since mission planning decisions are usually intimately linked to operators’

abilities to process tasks quickly and accurately [2, 3]. In the presence of multiple operators, it
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is necessary to simultaneously allocate tasks and determine the order in which tasks should be

processed, leading to a discrete problem instance whose optimal solution is not straightforward.

These types of discrete scheduling problems are known to be NP-hard (non-deterministic

polynomial-time hard) in the general case [4]. Despite this, the traditional deterministic scheduling

problem and its relevant variations have been considered for a number of years in the context of

job-shop applications, that is, applications involving the coordination and scheduling of jobs or tasks

that each require specific resources and have specific timing constraints (e.g., [5]), and a variety of

high-quality heuristic methods exist for constructing effective solutions. Some common strategies

involve the use of integer programming [6], disjunctive graphs [7], and various heuristics [8]. Al-

though these strategies are well-established in deterministic settings, they are often ill-suited for

human-centered applications. The main reason for this is due to the large amounts of uncertainty

that are involved in human behavior. For example, virtually all models of human cognitive pro-

cessing in visual search are stochastic in nature, and thus task processing times will usually carry

significant uncertainty. Although some strategies do exist for multiple resource allocation and dis-

crete scheduling in uncertain or dynamic environments (e.g., [9]), and robust optimization methods

are feasible in some circumstances [10], other exogenous factors that are generally unique to human-

centered systems can cause even these strategies to fail. For example, factors such as cognitive

load, fatigue, memory retention, among others, all have some effect on operator performance in

persistent task execution missions. In general, the particular effect of any one of the aforementioned

factors is task and individual dependent. However, there are some generally accepted relationships

that are often useful in system design. For example, the Yerkes-Dodson law generally implies that

moderate amounts of operator arousal or stress result in the best performance [11, 12]. Although,

in full generality, operator stress is an abstract construct that is dependent on the nature of and

the relationship between a number of diverse stressors [13, 14], the relationship suggested by the

Yerkes-Dodson law is often used by practitioners as the basis for moderating more controllable sys-

tem metrics, such as the operator task load, under the assumption that these metrics are closely

related to operator stress and can thus be used as a means of improving primary task performance.

In what follows, we develop a mixed-integer linear program (MILP) framework for constructing
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solutions to finite horizon task allocation and scheduling problems involving multiple human oper-

ators. Our method seeks to maximize the total achieved reward in the presence of processing time

uncertainties, while simultaneously mediating each operator’s task load by penalizing schedules that

are likely to cause task load levels to fall outside of a pre-specified regime. Note that the notion

of task load is generally different from the notion of workload. Indeed, the two constructs can be

distinguished as follows: task load is defined as “a measurement of human performance that broadly

refers to the levels of difficulty an individual encounters when executing a task" [15]. Workload, on

the other hand, “results from the demands a task imposes on the operator’s limited resources and is

determined by the relationship between resource supply and task demand” [16]. We choose to focus

on task load, as opposed to other exogenous human factors issues, as a means of mediating and

enhancing operator performance since it has well-established trends and links to performance that

can feasibly be exploited by mission planners [17]. After establishing the base case, we illustrate

how practical solution schemes can be constructed using our framework, which can potentially both

boost performance and address computational issues. We note that the present work is an extension

of our preliminary work [18], and is intended to explore the functionality of MILP frameworks in

multiple operator scenarios.

Specifically, our contributions are as follows. We start by building an MILP framework for

a multiple operator task-scheduling problem that can incorporate task load considerations using

simple, trend-based models. We then illustrate how robustness to task processing time uncertainty

can be added into this formulation through the use of scenarios. We also demonstrate how this

strategy allows system designers flexibility to choose both the desired degree of robustness and the

degree that task load is taken into account. Next, we illustrate how, in certain situations, general

performance can be improved through the use of adaptive schemes, which employ both strategic

re-planning and estimation. We first develop a basic receding horizon re-planning strategy for single

operator scheduling, and subsequently expand our problem formulation to demonstrate a common

scenario in which additional estimation is useful. We then discuss adaptations to these algorithms

for use with multiple operators. Finally, we show through simulation how increased computation

times due to such extensions may, in some scenarios, make some of the presented schemes intractable
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for practical use in their raw form. As an alternative, we propose a heuristic for task assignment in

the multiple operator case, and show that we can achieve vast computational advantages at small,

if any, performance expense. Throughout our discussion, we also make a variety of suggestions and

discuss issues that could arise in practical implementation of our proposed framework. Note that our

problem setup and assumptions are primarily motivated by multi-UAV applications; however, there

are a number of other situations in which this technology could be applied, such as manufacturing

systems, healthcare applications, and maintenance roles.

II. Multiple Operator Scheduling

A. Scheduling Objective

Suppose that, at some time, there are N ∈ N heterogenous tasks stacked in a queue awaiting

the attention of any one of K ∈ N operators. We assume that each task Ti, i ∈ {1, . . . , N}, has

an associated processing time ti ∈ R>0, which defines how long the task will take to complete, an

availability time si ∈ R>0, which defines the global time at which the task becomes available for

processing, and an associated reward ri ∈ R≥0, which is awarded upon successful task completion.

Assume, for the moment, that ti is known a priori (we relax this assumption later). Assume that the

parameters ti, si, and ri are independent of which operator processes the task. Further, assume that

all operators are aware of which tasks are available, and which tasks have already been processed at

any time. We consider an “all or nothing” reward distribution scheme, in which an operator receives

the full reward ri if the task is completed, and no reward otherwise, i.e., there is no pre-emption.

Further, we assume that the reward for a task is only obtained if some operator completes the task

within a pre-specified time horizon TH ∈ R>0.

With this framework, we seek to find an optimal multi-operator schedule, i.e., ordered sequence

of tasks for each operator, that maximizes the total reward accumulated across all operators. Note

that, given any ordered sequence of tasks for any single operator, one can easily define appropriate

starting times for each element of the sequence so that the availability time constraints si are not

violated. Indeed, the time at which the operator should start each task in the sequence can be taken

as the maximum of the completion time of the previous task in the sequence, and the appropriate
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start time constraint. For completeness, we can formally characterize the problem statement as

follows: define a schedule as a set of K sequences {Sk := {Tσ(1,k), Tσ(2,k), . . . , Tσ(Mk,k)}}k∈{1,...,K},

where
∑K
i=1Mk ≤ N and σ : tKk=1{1, . . . ,Mk} → {1, . . . , N} is some injective mapping (here, t·

denotes the disjoint union operation). Let S denote the set of all possible schedules. We seek to

find S∗ ∈ S, so that if each operator k were to start the first task in the sequence at time sσ(1,k),

and the j-th task in the sequence at time max{Cj−1,k, sσ(j,k)} where j ∈ {2, . . . ,M} and Cj−1,k

represents the time at which the j − 1-st task in operator k’s sequence is completed , then the total

accumulated reward across all operators is maximized.

B. Task Load Constraints

Since we consider the problem primarily in the context of human-UAV collaborative teams, the

effectiveness of a given schedule also hinges upon the cognitive states of the operators. Therefore, it

is desirable to construct a schedule that allows each operator to maintain his/her cognitive state in

a regime that is most amenable to high levels of performance. In particular, we focus our attention

on mediating the relationship between the chosen schedule and the resulting operator task loads.

Although there are many different ways of modeling task load, e.g., utilization ratio [19], multi-

dimensional load space abstractions [20], among others, we model task load via an incremental,

discrete process, which is driven by the task processing order and task processing times.

Our chosen model is based on the simple observation that, in most situations, when operators

are executing tasks, their task load level increases, and when operators are idle, their task load

decreases. In order to capture this simple dynamic evolution, to each task Ti, we associate a

task load increment δwi, which represents the amount that the operator’s task load increases upon

working on the task for time ti. Further, we assume that task load will decrease by a certain amount

when the operator is idle, proportional to idle time (discussed further in subsequent sections).

With this model, we seek to solve the nominal scheduling problem under the additional constraint

that, if possible, each operator’s task load must remain within a desired regime [w,w] ⊂ R at any

point 0 ≤ t ≤ TH . Although this model may be simplistic, it captures the essence of task load

evolution during sequential task processing. Indeed, many widely accepted task load evolution
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models are deterministic processes that augment task load during busy times and degrade task

load during idle times (e.g., [19]). Further, in the sequel, we will treat processing times as pre-

determined parameters for the optimization (even in the scenario-based formulation of Section IID).

Therefore, if desired, the task load increment parameters can be systematically chosen to reflect

more sophisticated dynamics. For example, if f : R≥0 → R is a function that relates time to the

amount that task load increments when the operator is engaging in a general task, then we can set

δwi = f(ti) for all i ∈ {1, . . . , N}. A similar statement can be made regarding task load decrements

during idle time. Note that while there are numerous task load (and cognitive workload) models in

the literature, many rely on large amounts of data to be collected or extensive physiological data to

calibrate and precisely model the operator load. We have chosen a simpler path that captures the

main qualitative features of such activities. As part of the development of these types of approaches,

it would be important to validate whether high level decision making problems (such as the one

addressed in this paper) could support such simplified models, or would necessitate more complex,

higher fidelity models. Currently, this is an open question that we leave as a topic of future work.

Despite its flexibility, the incremental task load model that we consider cannot account for

dynamics in which increment or decrement magnitudes are dependent upon initial conditions, since

the order in which tasks will be processed is unknown a priori. However, for a given operator,

task load evolution is usually a subjective experience anyway, and thus fine level task load models

may be ill-suited if they are derived from aggregate data. Therefore, in the construction of general

schemes intended to be used with many different operators, simplistic dynamics may be preferable

to finer level models. If, however, the model is meant to be tuned to a specific operator or group

of operators, or more precise real-time data can be leveraged to accurately predict cognitive states

(e.g., neurophysiological cues [21]), then alternative models may be preferable. In the latter case,

the MILP framework presented herein may not be sufficient and other options should be explored.

C. MILP Formulation

We now illustrate how the finite horizon scheduling problem can be formulated as a MILP. In

the formulation, the primary decision variables are binary indicators xi,j,k ∈ {0, 1}, which specify
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whether or not task Ti should be executed in the j-th time slot of operator k’s output sequence

(see Fig. 1). In accordance with Sections IIA and IIB, each task Ti is fully specified by the 4-tuple

Fig. 1 A diagram illustrating the basic MILP solution approach for an example with 4 tasks.

(ti, si, ri, δwi). In addition to the tasks {T1, . . . , TN}, we introduce one additional null-task TN+1

to represent times during which the operator is idle. Specifically, we define the null task as TN+1 :=

(ζ, 0, 0,−δwN+1), where δwN+1 > 0 is a constant and ζ ∈ R≥0 is a parameter representing the

length of the null-task. With the goal of capturing task load evolution within the MILP framework,

we augment the set of tasks to be processed with the newly created null task, and re-define T :=

{T1, . . . , TN , TN+1}. The null-task is the only task that the operator is allowed to execute more than

once. In other words, the output of our proposed method will be an augmented schedule, which

is formally defined as a set of sequences {Sk := {Tσ(1,k), Tσ(2,k), . . . , Tσ(Mk,k)}}, where each index

Mk ∈ N is upper bounded by the fixed parameterM ∈ N, and σ : tKk=1{1, . . . ,Mk} → {1, . . . , N+1}

is some mapping such that the preimage of each singleton set {i}, where i ∈ {1, . . . , N}, contains

at most 1 element. This differs from the previous definition in that the null-task can appear more

than once, and thus the variable M , which represents the maximum number of tasks that can

appear in any one operator’s sequence, is allowed to exceed the number of tasks N . In order

to guarantee reasonable output augmented schedules, it is necessary to pick M sufficiently large,

i.e., to consider output sequences that can incorporate a sufficiently large number of terms. Setting
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maximize
xi,j,k∈{0,1}

(∑
i

∑
j

∑
k

rixi,j,k

)
− pββ − pγγ

subject to
N+1∑
i=1

xi,j,k ≤ 1, ∀j, k

K∑
k=1

M∑
j=1

xi,j,k ≤ 1, ∀i

N+1∑
i=1

xi,j,k − xi,j−1,k ≤ 0, ∀j 6= 1, k

N+1∑
i=1

xi,j,ksi ≤ Bj,k, ∀j, k

N+1∑
i=1

xi,j,kti = Cj,k −Bj.k, ∀j, k

Cj,k ≤ TH , ∀j, k,

0 ≤ Bj,k − Cj−1,k ≤ ζ, ∀k; j 6= 1

0 ≤ B1,k ≤ ζ, ∀k

W0,k +

N+1∑
i=1

δw1xi,1,k =W1,k, ∀k

Wj−1,k +

N+1∑
i=1

δwixi,j,k =Wj,k, ∀k; j 6= 1

Wj,k − w ≤ β, ∀j, k

w −Wj,k ≤ γ, ∀j, k

β, γ ≥ 0.

(1)

M = dTH/ζe+N is sufficient for our purposes. For the remainder of this paper, when the distinction

between a schedule and an augmented schedule is not of particular relevance, we will simply use

the term “schedule,” and reserve the qualifier “augmented” only for cases where the distinction is

consequential to the discussion.

With this structure, we can incorporate task load into an MILP as an explicit variable that

satisfies an appropriate set of constraints. As such, the scheduling problem reduces to finding the

optimal augmented schedule based on the set T . Consequently, the MILP takes the form (1). We

note that this formulation is a natural extension of that in our previous work [18], which considers an

analogous problem for a single operator scenario. Here, we assume i ∈ {1, . . . , N}, j ∈ {1, . . . ,M},

and k ∈ {1, . . . ,K} unless otherwise stated. In (1), the first set of constraints ensure that the
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solution to the MILP corresponds to a feasible solution to the original scheduling problem. That

is, these constraints specify that each time slot, with respect to each operator’s sequence order, can

contain at most one task. Similarly, the second set of constraints guarantees that each task can

only be assigned to at most a single location in the sequence, with the exception of the null task,

which can be performed multiple times (note that by convention, i ≤ N and thus the constraint

does not include the null-task). The third set of constraints guarantee that each operator’s task

“slots” are filled successively. That is, if some operator’s task slot is filled with a task, then all of

the previous slots must be filled as well. This ensures that the output solutions correspond to valid

augmented schedules, according to the rigorous definition given. The fourth through the eighth

sets of constraints deal with issues relating to task availability, start times, and completion times.

Here, Bj,k and Cj,k denote the start time and the completion time of the j-th task in operator k’s

sequence, respectively. Accordingly, the fourth set of constraints guarantees that no task is started

before the specified availability time si. The fifth set of constraints guarantees that the start times

and completion times are defined in a reasonable way. The sixth constraint specifies that rewards

are only attained for those tasks that are completed prior to the time horizon TH . The contributions

of the seventh and eighth sets of constraints are two-fold: First, the lower bounds specify that, in

any individual operator’s sequence, no task can begin before the previous task ends. The upper

bounds arise from the fact that we have discretized operator idle time into discrete sets of length ζ.

These constraints limit “gaps” that may be present in the output schedule (see Remark 1).

The remaining constraints deal with moderating task load. With our incremental definition, it

is necessary to ensure that operator k’s task load level, Wj,k, after the j-th task is defined precisely

as the task load Wj−1,k after execution of the previous task plus the increment defined in the

task definition. This is captured by the ninth and tenth sets of constraints in (1). Here, W0,k

denotes operator k’s initial task load. Notice that, since we have included the null-task in the pool

of available tasks, this set of constraints also defines the appropriate change in task load due to

idle time. The eleventh, twelfth, and thirteenth sets of constraints state that the task load levels

need to remain within the pre-specified bounds, buffered by the decision variables β and γ. These

buffer variables β and γ enter into the objective function as linear penalties for violating the task
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load constraint, proportional to the parameters pβ , pγ > 0. Enforcing the task load bounds in this

manner, rather than as a strict constraint, is beneficial for a variety of reasons. First, exact bounds

w,w are usually not known beforehand, and thus enforcement of a strict bound may be ill-advised.

Second, the variables pβ and pγ provide the system designer with a means to tune the degree of

enforcement of task load bounds. Indeed, higher values of pβ and pγ lead to higher penalties in the

objective function for bound violations. Finally, the enforcement of task load penalties as a soft

constraint ensures feasibility of at least 1 non-degenerate solution, assuming that the time horizon

TH is sufficiently long. This leads to the following observation.

Lemma 1 (Feasibility). The optimization (1) is feasible. If, in addition, there exists i ∈ {1, . . . , N}

such that ti + si < TH , then there exists a non-degenerate feasible point, i.e., a point in which there

is at least 1 task in the output augmented schedule associated with the point in question.

Proof. The zero vector is feasible, implying nominal feasibility. If there exists i ∈ {1, . . . , N} such

that ti + si < TH , then we can construct a decision vector x̂ such that xi,1,1 = 1, all other binary

decision variables are equal to zero, B1,1 = si, C1,1 = si+ti, and γ = β = C, where C > max{|W0,1+

THδwi|, |W0,k − THδwN+1|}. Simple substitution verifies that the vector x̂ is feasible.

Most formulations of the optimal scheduling problem are known to be NP-hard. The MILP (1)

presents a similar set of difficulties. Despite difficulties in finding global optima for all problem types,

effective heuristics and reasonable methods exist for finding high quality solutions to MILPs [22].

Such methods include rounding schemes, branch and bound search strategies, genetic algorithms,

simulated annealing schemes, and many others [23, 24]. Many heuristics are implemented in an

efficient way and are included in a variety of software packages, including the Matlab optimization

toolbox [25] and the cvx software package [26, 27]. Therefore, for applications where strict global

optima are not of primary concern, the MILP formulation (1) may provide a viable solution.

Remark 1 (Null-Task Granularity). Recall that (1) relies on the creation of a discrete “null-task”

with length ζ. Once a solution to the MILP has been found and an augmented schedule is extracted,

tasks are executed by each operator in a sequential manner. Due to task availability constraints,

however, it may not be possible for the operator to start a new task immediately after the previous
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task has been completed. Further, the solver may also introduce artificial delays between successive

null-tasks. Therefore, if the time-profile of the operator’s task execution is mapped over the horizon

TH , there may be “gaps”, i.e., times in which no task (even a null-task) is being executed. Task

load effects due to these gaps are not explicitly taken into account in (1). However, a result of

the seventh and eighth sets of constraints is that the length of any possible gaps shrink to 0 as

ζ → 0. Therefore, if ζ is taken small enough, then task load effects due to unaccounted gaps become

negligible. Of course, shrinking ζ increases computational complexity, and is thus a tradeoff that

must be addressed by system designers.

D. Incorporating uncertainty

The major theoretical downfall of the scheduling formulation of Section IIC is that it does not

directly incorporate uncertainty in system parameters. As mentioned, uncertainty in behavior is

inherent to mixed human-machine teaming applications, and careful considerations should be taken

to design a system that takes this issue into account. In response, we focus our attention in this

section on designing systems that are robust to uncertainty in task processing times, which is usually

a significant source of uncertainty in persistent task analysis missions. As such, we assume that,

for each task Ti, the processing time ti is a random variable, which is distributed according to a

probability density function fi. We assume for now that each distribution fi is known with complete

certainty a priori. For simplicity, we assume that the distributions fi are operator independent;

however, we note that, if desired, operator-dependent processing time distributions can be added

to our formulation through straightforward extension (see Remark 5). Generally, the choice of

appropriate function fi is dependent upon the nature of the task being processed. However, in

some circumstances, standard distributions, such as log-normal distributions, have been shown to

be effective in the context of collaborative human-UAV missions [28, 29].

We adopt a scenario-based approach to incorporating uncertainty into the system. According

to this approach, the processing time distributions of each task are sampled to generate a set of

scenarios, or possible task processing times. These scenarios are then used to find an augmented

schedule, which remains feasible regardless of the scenario that is chosen to represent the true task
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processing times. If the underlying distributions are accurate, then using large numbers of scenarios

to generate a task processing schedule enables the result to be robust to particular realizations of the

processing time variables in actuality. That is, by following the schedule obtained, a wide variety

of task processing times will still produce rewards that are above the predicted lower bound. Note

that the optimal choice for the number of scenarios will generally depend on application goals. A

thorough study of the optimal number of scenarios with respect to a given performance metric is

an open research problem that we do not consider here. For our purposes, we choose values for this

parameter that allow us to illustrate qualitative effects on the resultant solution.

More formally, suppose that for each task Ti, we generate a set of Q ∈ N possible processing

times, (t1i , t
2
i , . . . , t

Q
i ), where tmi ∼ fi for all m. For each m ∈ {1, . . . , Q}, the set {tm1 , . . . , tmN , ζ}

defines a scenario, since it represents a possible realization of task processing times (note that the

null task is included). Given the set of Q scenarios, we expand the MILP (1) through the additional

requirement that any constraint must be satisfied for all of the generated scenarios. The resulting

MILP is expressed in (2). In (2), it is assumed that k ∈ {1, . . . ,K}, i ∈ {1, . . . , N}, j ∈ {1, . . . ,M},

and m ∈ {1, . . . , Q} unless otherwise stated. Note that (2) is largely the same as (1); however, there

are a few key differences. First, note that, for each m, there are unique sets of decision variables

{Bmj,k}, {Cmj,k}, and {Wm
j,k}, where j ∈ {1, . . . ,M} and k ∈ {1, . . . ,K}, yet there is only one set

of indicator variables {xi,j,k} which serves all scenarios. Thus, starting times, ending times, and

task load values are time or scenario-dependent, while the resulting schedule is not dependent on

these parameters. This allows for the unambiguous extraction of an augmented schedule from the

solution to the optimization. The result will then (ideally) be robust to uncertainty in processing

times. Second, an additional decision variable α has been added to bound the amount that the

task completion times can exceed the time horizon TH . This variable α is then factored into the

objective function by means of a linear penalty. As with task load, this “soft” enforcement of the

time horizon constraint is advantageous because it provides system designers with an additional

“tuning” parameter to control the degree of robustness in the system design. Indeed, by increasing

the value of pα, more penalty is incurred for generating schedules whose completion times are likely

to exceed TH . These additional parameters also serve to prevent the optimization from returning
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maximize
xi,j,k∈{0,1}

(∑
i

∑
j

∑
k

rixi,j,k

)
− pαα− pββ − pγγ

subject to
N+1∑
i=1

xi,j,k ≤ 1, ∀j, k

K∑
k=1

M∑
j=1

xi,j,k ≤ 1, ∀i

N+1∑
i=1

xi,j,k − xi,j−1,k ≤ 0, ∀j 6= 1, k

N+1∑
i=1

xi,j,ksi ≤ Bmj,k, ∀j, k,m

N+1∑
i=1

xi,j,kt
m
i = Cmj,k −Bmj.k, ∀j, k,m

Cmj,k − TH ≤ α, ∀j, k,m

0 ≤ Bmj,k − Cmj−1,k ≤ ζ, ∀k,m; j 6= 1

0 ≤ Bm1,k ≤ ζ, ∀k,m

Wm
0,k +

N+1∑
i=1

δw1xi,1,k =Wm
1,k, ∀k,m

Wm
j−1,k +

N+1∑
i=1

δwixi,j,k =Wm
j,k, ∀k,m; j 6= 1

Wm
j,k − w ≤ β, ∀j, k,m

w −Wm
j,k ≤ γ, ∀j, k,m

α, β, γ ≥ 0.

(2)

degenerate solutions in the case of highly skewed processing time distributions. This discussion

readily leads to the following lemma, whose proof is omitted.

Lemma 2. There always exists at least 1 non-degenerate solution to the optimization (2).

Remark 2 (Robust Optimization). Many schemes exist for solving optimization problems in the

presence of uncertainty. In particular, the area of robust optimization provides tools for finding

solutions that perform well in the worst case, given that the underlying uncertainty sets can be

accurately bounded [10]. Scenario-based approaches to handling uncertainty can, in some sense, be

viewed as a “naive” approach to robust optimization since they rely on an expansion of the constraint

set through Monte Carlo sampling. Despite this, scenario-based approaches lend themselves well to a

variety of applications due to their simplicity and effectiveness. We chose to adopt such an approach

15



for the following reasons: First, scenario-based optimization is simple and intuitive, making it an

attractive option for practitioners and theoreticians alike. Second, most other approaches to robust

optimization rely on the presence of bounded uncertainties, or require approximations that enforce

artificial bounds. The scenario-based approach does not require such bounds. Third, scenario-based

approaches allow system designers to easily tune the problem to fit with a desired degree of robustness.

Finally, given a “regularly” shaped distribution of uncertain parameters, scenario-based approaches

usually provide reasonable performance with only a modest number of samples.

Remark 3 (Scenario Generation). Scenarios are generated by sampling the functions fi. Naive

Monte-Carlo sampling usually produces samples that most accurately reflect the underlying distri-

bution in the limit as the number of samples tends to infinity. However, scenarios can be generated

by virtually any reasonable sampling method and, in certain situations, design goals may be better

served by these alternative means. For example, processing time distributions may have semi-infinite

support, and thus Monte-Carlo sampling can produce a few scenarios with excessively long processing

time durations in comparison to the horizon length. In most cases, excessively long durations will

lead to degenerate, or excessively conservative solutions, which are not usually helpful. Therefore

sampling techniques that restrict sample processing times may be beneficial.

E. Numerical Examples

Fig. 2 shows a summary of scheduling solutions for an abstracted and simplified mission with 10

tasks, 2 operators, a total horizon length of 30 (dimensionless units), and log-normally distributed

task processing times. The solution was calculated using the formulation (2). For this simulation,

we chose pα = 10, pβ = pγ = 15, w = 0.3, w = 0.7, and W0,1 = W0,2 = 0.5. In Fig. 2(a)

and Fig. 2(c), the problem setup is portrayed using the bars in the top portion of the figures.

For each task Ti, the appropriate bar starts at the task availability time si, and extends for a

length corresponding to the expected task execution time. The number inside the bar represents

the reward obtained for successful completion of the task. The gray bars in the lower portion of

the plot represent a simulated instance of the operator task execution for each scenario condition,

based on the solution to (2). The start time and length of the bar represent the time that the
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Fig. 2 An example solution produced using (2).

task was started and the task duration respectively, while the number inside the bar represents the

task index, with a letter “R” indicating a null-task (or resting task). Specifically, these simulated

schedules were calculated as follows. First, “actual” task execution times, i.e., realizations of each

task processing time, were randomly sampled from the appropriate distribution. Then, for each

scenario condition, scenarios were generated using naive Monte-Carlo sampling (see Remark 3),

and the optimization (2) was solved using Matlab’s Intlinprog function. Using the resultant

augmented schedule, task execution was simulated by assuming that each operator processes each

task in the respective sequence specified by the optimization solution and that each task has a

duration according to the “actual” processing time. Each task was started at the earliest possible

time (the maximum of the previous task completion time and the availability constraint for the

task), and tasks were only included if their actual completion time was less than TH . Note that in

the actual schedule, all task executions satisfy the availability constraints, as expected, but their

actual duration differs from the expected duration due to uncertainty in processing times.

Fig. 2(b) and Fig. 2(d) show the evolution of task load corresponding to the simulated mission in

Fig. 2(a) and Fig. 2(c). In the simulation, a simple linear task load model is considered: if t ∈ R≥0,
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we assume operator k’s task load W (t) evolves according to the dynamics

dW
dt

(t) =



0.05 , if executing a non-null task at time t and W (t) 6= 1,

−0.05 , if either executing a null task or no task at time t and W (t) 6= 0, and

0 , otherwise.

We have chosen to constrain task load values to lie between 0 and 1 both for modeling puposes,

and because this is a normalization that arises naturally in common task load models. For example,

if task load were correlated with utilization, i.e., the fraction of recent time that the operator has

been active, then this normalization is necessary [30]. In a priori planning, this cap is not taken

into account by the optimization, and thus, for planning, it is assumed that δwmi := ±0.05tmi , where

the sign is dependent upon whether the task under consideration is a null-task. Note here, that as

the number of scenarios increases, the task load does not exceed the specified bounds.

Fig. 3 illustrates the effects of altering the task load bounds on achieved performance for a

single-operator scheduling mission. The plot was generated as follows. First, an underlying task

set was generated, the parameters TH = 30, W0,1 = 0.5, and pα = 10 were initialized, and a set

of 10 scenarios were generated. Then, 10 simulations runs were conducted, where in each run, 1)

“actual” task processing times were sampled from the appropriate distribution, 2) an augmented

schedule was created using a solution to (2) for each set of w,w, pβ , and pγ values (for the “no task

load“ condition, simply set these parameters to 0, i.e., no penalty is assessed for exceeding task load

bounds, under the same “capped” linear task load model as before, 3) the task execution process

was simulated using the resulting schedule and “actual" task times in the same manner that was

used to generate the gray bars in Fig. 2(a) and Fig. 2(c), and 4) the achieved nominal reward was

recorded, i.e., the sum of the ri’s for tasks that could be executed within time TH . Fig. 3(a) shows

the mean and standard deviation of the rewards obtained over the simulation runs (the absence

of error bars indicates no variation across runs). Fig.s 3(b) and 3(c) show the maximum amounts

that the task load exceeded the upper task load bound and the maximum amount that the task

load violated the lower task load bound during task execution, respectively (not taking into account

violations that occur after all tasks in an operator’s schedule have been executed). Note that, as

expected, the obtained reward decreases as pβ and pγ are increased and as the allowable task load
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Fig. 3 An illustration of the effects of altering the parameters w, w, pβ, and pγ .

bounds widen, while the amount of task load violation decreases.

III. Adaptive Scheduling Scheme

The use of a priori, scenario-based robust scheduling strategies can generate reliable lower

bounds on system performance. That is, using a reasonable number of scenarios (and, of course,

assuming that the chosen processing time distributions are accurate), the MILP (2) will produce a

theoretical lower reward bound that will likely hold true in actuality. In missions where accurate

performance guarantees are crucial to system success, such bounds may be sufficient. However,

theoretical bounds produced by scenario-based robust optimizations may be very conservative, par-

ticularly when the probability distributions of uncertain parameters are highly skewed or have high

variance. For example, if visual search times are modeled via log-normal distribution, then robust

scheduling strategies will be most likely driven by search times occurring in the tail, which are

unlikely to occur in actuality. In light of this fact, it is clear that naively following a robust schedule

that is calculated using a priori information does not take advantage of the full knowledge at the

designer’s disposal during the mission, and thus may lead to poor solutions with respect to actual
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realizations of uncertain parameters.

In this section, we explore adaptive methods for improving performance while still maintaining

the desired robustness properties of solutions. We start by developing strategies for the single-

operator case (i.e., the case where K = 1), and subsequently show how they can be extended for

use with multiple operators.

A. Single Operator Receding-Horizon Scheduling

Assume that a single operator is charged with processing tasks generated by the UAVs. In

the present problem setup, tasks are processed sequentially by the operator. Performance under

a robust scheduling strategy can potentially be improved by re-planning the mission in an online

fashion as realizations of task processing times become known. This observation naturally leads to

a receding-horizon robust scheduling scheme, which calculates new, robust schedules after each task

is processed. Such a scheme is described by the following pseudocode:

1. collect the tasks to be processed in a set T ,

2. formulate and solve the scenario-based robust scheduling problem as Section IID, with respect

to the set T and a total horizon length TH ,

3. execute the first task in the resultant augmented schedule, and observe the processing time t,

4. if the executed task is a not a null-task: remove it from the set T ,

5. subtract t from all remaining task availability constraints, redefine TH = TH − t, and

6. repeat steps 2-5 until all tasks have been executed or until the remaining horizon TH ≤ 0.

The advantage of this approach is that it takes advantage of the manner in which uncertainty arises

in the sequential task analysis mission. Indeed, in these missions, uncertainty is generally reduced

as time progresses. Accordingly, the receding horizon scheme re-plans each time the uncertainty

set is incrementally decreased, which, in the robust planning case, will generally lead to better

performance. The obvious drawback to the presented receding horizon strategy is that it requires

an MILP to be solved after each task is executed; thus, the total computational complexity is
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significantly increased. Therefore, there is a tradeoff between solution quality and computation

time that will need to be assessed on a case by case basis.

Remark 4 (Computation time). Even though the receding-horizon robust scheduling schemes may be

computationally intensive in their raw form, there are many simple steps that can be taken to adjust

the schemes and fit them into a variety of computational frameworks. The simplest amendment is

to reduce the number of scenarios used, which reduces complexity at the expense of robustness. A

slightly more sophisticated strategy involves an adaptive approach that only re-plans when a certain

criterion is met, as opposed to re-planning after every task execution. For example, one could choose

to re-plan only if the observed time on the executed task is significantly different from the worst-case

processing time predicted by the generated scenarios. For the sake of brevity, a thorough treatment

of these types of amendments is not included here, and is left as a topic of future work.

B. Single Operator Receding-Horizon Robust Scheduling with Estimation

Up until this point, it has been assumed that the probability distribution fi of task process-

ing times for each task has been known exactly. Indeed, samples are drawn assuming certain

distributions in order to generate the scenarios that are used in the optimization (2). In many

cases, however, the processing time distributions themselves may not be known exactly, and thus

it may be beneficial to estimate them during the course of task execution. Of course, depending

on problem assumptions, such estimation may not be helpful, e.g., if all tasks are assumed to have

completely independent distributions fi. However, given appropriate additional problem structure,

online estimation of uncertain distributions can potentially further boost performance when used in

conjunction with the receding-horizon MILP approach of Section IIIA. To illustrate, we develop a

common scenario that can benefit from such estimation here.

Assume once again the presence of a single operator. Building on the formulation of the pre-

vious sections, suppose each task Ti is generated by one of P ∈ N sources, e.g., different regions of

interest, and each such task can be of T ∈ N possible types, e.g., easy, medium, or hard. Assuming

independent sampling, suppose further that associated to each source p ∈ {1, . . . , P}, there exists

an unknown, static probability mass function gp : {1, . . . , T} → [0, 1] which captures the likelihood
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that a task originating from source p is of type `. That is, the probability of any single task that

is generated by source p being of type ` is gp(`). Finally, to each type `, we associate an unknown,

static probability density function f` : R≥0 → R, which captures the distribution of possible oper-

ator processing times. Note that the processing time distributions f` are region independent. To

summarize, with these additions, each task Ti now consists of a 6-tuple Ti = (ti, si, ri, δwi, φi, τi),

where si, ri, and δwi are defined as before, φi ∈ {1, . . . , P} represents the source which generated

the task (known to the operator), τi ∼ gφi
is the task type (unknown to the operator), and ti ∼ fτi

is the time that it will take to process the task (unknown to the operator).

As mentioned, the underlying distributions associated with both sources and types are un-

known to the operator. However, in this new setup, there are commonalities among processing

time distributions that can be exploited through estimation. Therefore, we implement estimation in

conjunction with the receding horizon approach as follows. For each source p and each type `, let ĝp

and f̂` denote estimates of the respective functions. The basic idea behind this adaptive scheduling

approach is to incrementally update the estimates ĝp and f̂` as new information becomes available,

i.e., as the operator processes tasks. The updated estimates are then used to perform subsequent

scheduling operations. Loosely, the algorithm evolves as:

1. collect the tasks to be processed in a set T ,

2. generate new scenarios according to the estimates {ĝp}p∈{1,...,P} and {f̂`}`∈{1,...,T},

3. formulate and solve the scheduling problem (2),

4. execute the first task Ti in the resulting sequence, and observe τi and ti,

5. if task Ti is not a null task,

(a) update the estimates ĝφi
and f̂τi ,

(b) remove the executed task from the set T ,

6. subtract ti from the remaining task availability constraints, redefine TH = TH − ti, and

7. repeat steps 2-6 until all tasks have been executed or until the remaining horizon TH ≤ 0.
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Fig. 4 A performance comparison between different solution methodologies.

Step 2 in the process outlined above requires explaination. Indeed, the operator does not know

the task type of any unprocessed task with complete certainty, and thus it is necessary to make

a decision about which distribution should be sampled for the purpose of generating scenarios.

This choice can be made in many different ways. For example, a logical choice is a “maximum

likelihood” method, where each timing parameter tmi for the m-th scenario is selected by first

finding τ∗i := arg max` ĝφi(`) and subsequently sampling the distribution fτ∗
i
. That is, each scenario

is generated by sampling from the processing time distribution corresponding to the most likely

type for task Ti, according to ĝφi
. We exploit the “maximum likelihood” sampling process in our

remaining simulations. Once the sampling method has been established, it remains to choose a

process for updating the distributions ĝp and f̂`. The appropriate update method will generally be

governed by the problem assumptions. To illustrate the functionality of the receding-horizon robust

scheduling scheme with estimation, we assume that each element in the set {f`}`∈{1,...,T} := (µ`, σ`)

is log-normally distributed, where µ`, σ` are the standard log-normal distribution parameters. We

also assume that some previous information is available regarding each distribution gp and f` in

the form of a set of previous samples, accumulated prior to the current scheduling mission. With

this information, upon completion of task Ti, the appropriate distributions ĝφi
and f̂τi are updated

using standard maximum likelihood estimation.

Fig. 4 presents a comparison between the various solution methods discussed thus far for a

sample mission involving 10 tasks, 2 possible task sources, and 3 possible task types. Here, it is
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assumed that there is uncertainty in task processing times, as well as in the task distributions gp

and the distributions f`. Each distribution gp was generated randomly, while the distributions f`

were generated by creating a set of log-normal distributions, each with identical σ parameters, and

whose medians (eµ) were spaced equally across the interval [0, 0.5TH ]. It is assumed that 10 prior

samples from each source distribution gp are available a priori, and 5 prior samples are available

from each distribution f`. The prior samples were generated from sampling the appropriate “actual”

distributions. The estimates ĝp and f̂` were then generated using standard maximum likelihood

estimation. For the methods with the estimation step, these distribution estimates were re-evaluated

each time the operator executed a task. In all cases, scenarios were generated using the “maximum

likelihood” scheme. Finally, we chose pα = 10, pβ = pγ = 15, W0 = 0.5, w = 0.3, w − 0.7, and

TH = 30. Fig. 4(a) shows the nominal rewards obtained, i.e., the sum of the the rewards ri associated

with tasks that were executed, averaged over 10 simulated task execution processes. The same setup

and prior information was used in each run, but each run had different realizations of the processing

times, sampled from the underlying distributions. Identical scenarios were used across experimental

conditions (i.e., solution methods considered). As expected, the no task load consideration condition

resulted in the highest achieved rewards for all cases, and the rewards showed a slight downward

trend as the number of scenarios increases, since higher numbers of scenarios provide increased

robustness at the expense of lower expected rewards. Also note the large variances due to the high

amounts of uncertainty in the underlying problem. Fig. 4(b) shows the maximum amount that

the upper task load bound was violated during the course of task execution (the lower bound was

almost never violated in any of the conditions, so we have chosen to omit this case). Notice that,

qualitatively, the receding horizon scheme with estimation resulted in lower task load violations

than the other methods, while still maintaining a similar level of nominal reward, particularly as

the number of scenarios increased. Although the obtained benefit is quantitatively inconclusive in

this example, we hypothesize that the adaptive scheme with estimation would likely produce a more

pronounced benefit in situations with larger numbers of tasks. Rigorous analysis of this hypothesis

and other effects due to the underlying problem structure on the utility of adaptive schemes is

another interesting avenue of future research.
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C. Multiple-Operator Receding-Horizon Schemes

On the surface, it may seem straightforward to extend the receding-horizon schemes of the

previous two sections for use with multiple operators. However, upon closer examination, certain

aspects of the algorithms presented in the previous sections become unclear in the presence of

multiple operators that process tasks simultaneously. For example, in calculating schedules in the

receding horizon framework for a single operator (as in Section IIIA), it is abundantly clear when

re-planning operations are appropriate, e.g., when the operator finishes processing a task. However,

with multiple operators, each operator will finish his/her assigned tasks at different times, and

therefore a decision must be made as to when it is appropriate re-plan. We explore these and other

issues relating to multiple operator adaptive schemes in this section.

Assume the presence of K > 1 operators and the task structure of Section III B. As before, we

assume that all task-related quantities are operator independent. That is, each task Ti is defined

as before, with the parameters ti, si, ri, δwi, φi, τi being independent of which operator processes

the task. Further, the distributions gp associated with sources and the distributions f` associated

with each task type are operator independent. Under these assumptions, the formulation (2) is

appropriate for a priori planning of schedules. However, to develop a receding horizon scheme for

multiple operators (analogous to Section IIIA) some additional work is necessary. In particular,

different operators will process and finish tasks at different times, and therefore an appropriate

re-plan strategy must be formulated. In order to keep a close connection to the single cycle case,

we develop a strategy in which we re-plan each time a non-null task is completed. This is explained

by the following pseudocode.

1. collect the tasks to be processed in a set T ,

2. generate new scenarios,

3. formulate and solve the scheduling problem (2),

4. instruct all operators to begin executing their respective schedules,

5. if some operator finishes processing a task Ti after time t has elapsed, subtract time t from

the horizon length TH and from the remaining task availability constraints,
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6. if task Ti is non-null, remove it from the task list T ,

7. formulate and solve a multiple operator scheduling problem, constraining tasks that are already

in progress to be completed first by the appropriate operator,

8. instruct operators to begin executing their new schedules (if an operator has a task already

in progress, the completion of this task will be the first task in their new schedule), and

9. repeat steps 4− 8 until all tasks are executed or until the remaining horizon length TH ≤ 0.

Notice that step 7 of the above algorithm requires the ability to plan a new multiple operator

schedule while simultaneously constraining the tasks that are currently in progress to be completed

first. This will require an additional constraint to be added to (2). For example, if task Ti is in

progress by operator k at the time of re-plan, then the additional constraint to be added would take

the form xi,1,k = 1. Indeed, setting xi,1,k = 1 indicates that the first task in operator k’s new task

sequence is task Ti. Recall, however, that at the time of re-plan, the actual processing time of any

task in progress is still unknown. Therefore, in order for the MILP to accurately reflect the current

state of the task execution process, prior to solving the MILP (2) (with the additional constraint

just mentioned), it is also necessary to subtract off the time that each task has been in progress

from the generated scenarios.

In summary, for the previous algorithm, step 7 will take the form:

1. Generate new scenarios for the remaining tasks in T

2. For each task in progress Ti,

(a) Find the difference t̄ between the current time and the time task Ti was started

(b) For all m, set tmi = max{tmi − t̄, 0}.

(c) Find the agent k that is working on task i. Add an additional constraint xi,1,k = 1 to (2).

3. Formulate and solve (2), including the newly added constraints.

If desired, an estimation step can be added in a way analogous to that presented in Section III B.

This addition is straightforward, and thus we omit further discussion of this case.

26



Remark 5 (Generality). Although we have made a variety of assumptions in formulating (2),

additional degrees of generality can be achieved by relaxing some of these assumptions and amending

the MILP in a natural way. For example, task processing times can be made operator dependent by

generating scenarios for each operator, and introducing an additional index k into the task processing

time. With this setup, the variables tmi would become tmi,k to represent the time required for operator

k to process task i according to the m-th scenario. Other generalizations can be made in a similar

fashion. These additional complexities are, of course, at the expense of additional computation.

Remark 6 (Re-plan Schemes). In the presented receding horizon scheme for multiple operators,

we have chosen to re-plan each time a non-null task is completed by one of the operators. This

is certainly not the only strategy. For example, an alternative strategy would be to re-plan only

if a non-null task is finished and the actual task duration is significantly different than expected.

Exploration of different re-plan strategies should be assessed in future work.

Remark 7 (Task Pool Evolution). A natural question that arises from the presented multiple-

operator, receding horizon strategy is whether it is possible to simply omit tasks that are already in

progress from the re-plan MILP, rather than altering scenarios and including additional constraints

that require the completion of such tasks. This alternative strategy is not possible given the presented

MILP framework, as the actual task end-times are still unknown at the time of re-planning.

IV. Heuristic Approach

The multiple operator formulations of the previous sections may be appropriate for small

scheduling problems; however, the introduction of additional variables, which are necessary to move

from a single to a multiple operator framework, and the additional planning instances that are

required by adaptive approaches can significantly increase computation time, as shown in Fig. 5.

This figure was generated for an example problem involving N = 10 tasks, TH = 30, ζ = 2, w = 0.3,

w = 0.7, W0,k = 0.3 for all k, pα = 10, and pβ = pγ = 15. Note that even with a moderate number

of tasks and operators, the inflation of the state space caused by the introduction of new variables

and adaptive strategies significantly increases computation time. We remark that the plot in Fig. 5

is only meant to give the reader a flavor for the usual trends that are observed with respect to
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Fig. 5 Observed computation times for different solution methodologies.

computation time, and is not meant to portray a strict relationship to be observed in every problem

instance. Indeed, due to the use of heuristic solvers (namely, Matlab’s intlinprog solver), observed

computation times rely heavily on the particular problem setup and the parameters used to initialize

solvers. For instance, there may be some cases in which moving from a single agent setup to a 2

agent setup actually reduces computation time due to the nature of the state space. Despite this,

the general trend remains in that computation time diverges quickly to an impractical level as the

number of agents grows and additional problem complexities are added.

This discussion motivates the need for alternative means for solving the multiple operator prob-

lem. In this section, we introduce one such method, and illustrate how this alternative method can

still achieve adequate performance, while using only a fraction of the computation time necessary

for solving the problem with the naive approaches of Sections IID, IIIA, and III B. The idea be-

hind this alternative approach is straightforward: instead of solving a single optimization across

all operators, we use a heuristic to assign tasks to specific operators beforehand, and subsequently

solve the resulting single operator problems. In this section, we restrict our attention to a priori

planning strategies, although one could easily construct an analogous approach that re-plans in a

receding-horizon or other adaptive fashion.

Consider first the case of a single scenario, i.e., Q = 1. Our proposed assignment strategy

proceeds in a methodical fashion, in which agents are cyclically selected one at a time according to

a pre-defined order. When an agent is selected, a single task is assigned to the selected agent out of
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the pool of remaining tasks, based on scores that are assigned to each task. The algorithm evolves

in the following manner. In this algorithm, the pool of available tasks includes the null-task.

1. Initialize statistics α = β = γ = 0, select λ ∈ (0, 1].

2. For each operator, initialize statistics θk = 0, ξk = W0,k.

3. Select a permutation of the set {1, . . . ,K} to act as the selection order

4. Until all tasks have been assigned, do the following (cycling through the selection order):

(a) For the next operator in the selection order, say operator k, calculate the theoretical

times tend
i that operator k could finish each task Ti, assuming that θk is the current time

and that the times prescribed by the scenario are the true task processing times.

(b) Calculate theoretical task load values wend
i that would be attained if each task Ti were

to be processed next, under the same assumptions of the previous step, along with the

additional assumption that ξk is operator k’s current task load level.

(c) For each i, if wend
i −w > β set εi = wend

i −w−β and β = wend
i −w , otherwise set εi = 0.

If −wend
i + w > γ set εi = −wend

i + w − γ, otherwise set εi = 0 and γ = −wend
i + w.

(d) For each i, if tend
i − TH > α, set εi = tend

i − TH − α and γ = tend
i − TH , otherwise set

εi = 0.

(e) For each i, calculate a score πi = (ri − pαεi − βεi − γεi)λt
end
i −θi .

(f) Find i∗ = arg maxi πi and, if task Ti∗ is not a null-task, assign task Ti∗ to operator k.

(g) Set θk = tend
i∗ , ξk = wend

i∗ and, if task Ti∗ is not a null-task, remove task Ti∗ from T .

The idea behind this algorithm is to quickly and incrementally simulate a task-execution process for

each operator, based on local information, and use the result as a basis for task assignment. Each

task is assigned a score based on how much the objective function of (2) would increment if that

task were to be executed next in the considered operator’s task sequence. The score for each task

is discounted by a factor λt
end
i −θi , which is proportional to the amount of time that it will take the

operator to process the task (assuming that the time indicated by the scenario is accurate). The
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Fig. 6 An illustration of the proposed task assignment process for a sample mission.

task with maximum score is assigned to the operator under consideration, and this task is “executed”

next in the respective operator’s simulated schedule.

Since we have only used one scenario thus far, the previously discussed algorithm suffers from

the same deficiency as traditional deterministic scheduling schemes in the presence of uncertain

processing times. Namely, we have performed task assignments based on the assumption that the

processing times for a single scenario are true. To incorporate some degree of robustness into the

heuristic task assignment scheme, we propose the following algorithm (see Fig. 6).

1. Generate a set of Q scenarios, and initialize a matrix counts as a N ×Q matrix of zeros.

2. For each scenario m:

(a) Use the previous algorithm to obtain a target-task assignment.

(b) For each operator k, and each task Ti assigned to operator k, increment the (i, k)-th

element of the matrix counts by 1.

3. To obtain the final target task assignment, assign each task Ti to agent k∗ :=

arg maxi counts(i, ·).

This new algorithm has the added feature that it bases the final target assignment on a series of

heuristic target assignment operations, and assigns to each task the agent that is most likely to
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Fig. 7 Performance of heuristic task assignment methods in comparison to “naive” scheduling.

comprise the best task-operator assignment.

One other small detail that must be addressed is the procedure to be used if there is a “tie”

between two or more operators when executing the final step of the algorithm. One possibility is

to randomly select one of the operators as the final assignment. Although valid, this strategy does

not take into account the tasks that may already be assigned to the set of operators that are tied.

A potentially better approach in the case of ties is to assign the task according to either the global

end times of the task, or the number of tasks that are already in the various operator’s assignment.

For example, if there is a tie between operators 1 and 2, but operator 1 has already been assigned

5 tasks and operator 2 has not been assigned any task, then it may be beneficial to give the task to

operator 2. Thorough comparisons between these variations should be assessed in future research.

Fig. 7 shows a performance comparison between 3 solution methods for a sample 3-operator

scheduling problem, using a “least number of tasks” tie-breaking procedure. The solution methods

used are 1) the “naive” approach of Section IID, 2) the full heuristic assignment and solution ap-

proach of the present section, and 3) a “reward-only” heuristic assignment strategy that is analogous

to the full heuristic strategy, except scores are assigned to tasks solely based on the rewards ri during
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assignment, i.e., the strategy is the same as that discussed above, except the value of εi, εi, and εi are

always taken to be 0. The plots illustrate the average over 10 simulation runs of the ratio between

the computation times, obtained nominal rewards, and the task load violations for the heuristic

strategies to the respective variables for the naive strategy. Notice that the computation times

for the heuristic strategies is only a small fraction of that necessary for the naive strategy, while

the performance remains roughly the same. In fact, the heuristic strategies even out-performed

the naive strategy in some cases. The reason that this is possible is again due to the nature of

the heuristic solvers used. To prevent excessively long computation times, a bound was placed on

number of nodes that intlinprog solver was permitted to explore during its implicit branch and

bound solution phase (105). This bound sometimes limited the quality of the solutions produced by

the naive strategy, allowing it to be out-performed by the heuristic method. This result only serves

to further make the case that heuristic methods may be preferable to the naive approach.

Remark 8 (Task Assignment). We have chosen to assign tasks to operators on the basis of which

operator was assigned a given task most often upon iterating through the various scenarios. Loosely

speaking, this is a sort of “maximum likelihood” approach in the sense that it selects, for each

task, the operator that is most likely to be assigned to that task, given a sample of the multi-variate

processing time distribution that generated each scenario. As before, many other methods can be used

instead, as long as the chosen strategy selects exactly 1 operator for each scenario. For example, it is

conceivable that choosing the “least likely” operator may, in some cases, lead to increased robustness.

Once again, we leave a thorough study of these concepts as a topic of future research.

V. Conclusion

In the context of human-UAV collaborative missions, it is crucial to develop task scheduling

methodologies that 1) take human cognitive requirements into account, 2) are robust to uncertainty

in system and modeling parameters, 3) can incorporate a wide range of design goals, and 4) are simple

enough to practically implement. Our presented MILP framework can potentially accomplish all of

these goals. Indeed, we have illustrated how this framework can incorporate task load, introduce

robustness, and expand to handle a number of additional layers of complexity, while staying within

32



a straightforward framework that is familiar to theoreticians and practitioners alike.

With this preliminary work in hand, future work should focus on verifying the utility of these

scheduling frameworks through human subjects experiments. In particular, these studies should seek

to 1) verify that performance actually does, in fact, improve with the introduction of such scheduling

systems, 2) investigate whether simple task load models are sufficient for these applications or if

more elaborate models should be considered, and 3) identify any other unforeseen practical or

performance issues that may arise. With this knowledge in hand, additional theoretical work can

be explored on how to incorporate additional layers of complexity and tailor system designs to

particular human-UAV missions. Furthermore, we envision that this kind of technology could be

applied to a multitude of other domains, including healthcare and manufacturing applications. In

addition to the suggestions throughout the text, other interesting future research avenues include a

thorough investigation of how to choose optimal parameters for a given application domain or set

of design goals, a study of the domain of applicability of the various solution methods, e.g., a study

of the conditions under which estimation is useful, and a comparison between different heuristics

for task assignment, given the timescales on which a particular mission operates.
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