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Abstract

CAMERA COORDINATION FOR INTRUDER DETECTION IN 1D ENVIRONMENTS
BY

JEFFREY R PETERS

This work proposes surveillance trajectories for a network of active (pan-tilt-
zoom) cameras to detect intruders. We consider smart intruders, which appear at
arbitrary times and locations, are aware of the cameras configuration, and move to
avoid detection for as long as possible. As performance criteria we consider the worst-
case detection time and the average detection time. We focus on the case of a chain
of cameras, and we obtain the following results. First, we characterize a lower bound
on the worst-case and on the average detection time of smart intruders. Second, we
propose a team trajectory for the cameras, namely Fqual-waiting trajectory, with
minimum worst-case detection time and with guarantees on the average detection
time. Third, we design a distributed algorithm to coordinate the cameras along
an Equal-waiting trajectory. Fourth, we design a distributed algorithm for cameras
reconfiguration in the case of failure or network change. Finally, we illustrate the
effectiveness and robustness of our algorithms via simulations and experiments on a

camera network testbed.
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List of Figures

This figure shows five cameras installed along a one dimensional open
path. The field of view of each cameras is a point on the path. Cam-
eras coordinate their motion to detect smart moving intruders along
thepath. . . . . . . . . . . . .

max

This figure shows a 27™*-periodic cameras trajectory in which cam-
eras ¢; and ¢y are synchronized (z1(t) = zo(t) for t = k7™ with
k € N.o; see Section 2.1), while cameras ¢ and ¢z are not synchro-
nized. Notice that, because of the synchronization among cameras,
intruder ey, and in fact any smart intruder appearing between cameras
c1 and co, is detected at time k7™ for some k € N. 4. Consequently,
the worst-case detection time for intruders appearing between cam-

eras ¢, and cy is 27™ma

. Intruder ey, and in fact any smart intruder
appearing between cameras ¢y and c3, may avoid detection by properly
choosing its trajectory. . . . . . . . . . ...
This figure shows the Equal-waiting trajectory for 4 cameras. Notice
that (i) the cameras are synchronized, (ii) the trajectory is 27max-

periodic, and (iii) the waiting time of each camera is the same at both

its boundaries. . . . . . . ..



In Fig. 4(a) we report the ratio ADT(X®)/ADT* as a function of
the number of cameras n (blue dots), and the bound (3 + \/n)/4 in
Theorem 3.1 (red dots). For the considered configurations, the bound
(d™ax + dmin) /(2d™in) is much larger than the experimental data, and
it is not considered here. The lengths d; of the patrolling windows are
uniformly distributed in the interval (0, 1], with d; = d™* = 1. We
assume that cameras have unit speed. In Fig. 5 we report the ratio
ADT(X®1)/ADT" as a function of the number of cameras n (blue
dots), and the bounds in Theorem 3.1 (black dots and red circles).
The lengths d; of the patrolling windows are chosen as d; = d™** =1
and d; = (1++/n)~! for all i € {2,...,n}. As predicted by equation
(10), the performance bound in equation (8) is tightly achieved.

In this figure we report the ratio ADT(X®)/ADT* as a function of
d™ax /dmin (blue dots), and the bounds in Theorem 3.1. For each value
of d™2* /d™n the lengths of the patrolling windows are uniformly dis-

tributed in the interval [d™™/d™# 1], with d; = d™ = 1. Notice that

the theoretical bounds are compatible with the experimental data. . .

36
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10

In this figure we validate Algorithm 2 for a set of 4 cameras with unit
speed. Cameras start at random positions inside their patrolling win-
dow and achieve coordination at time 150. Notice that the algorithm
recovers from the temporary failure of camera c4; between time 340
and 440. Moreover, the coordination performance of the algorithm
degrade gracefully in the presence of noise affecting the cameras mo-
tion of the cameras (time 700). In this simulation the cameras motion
noise is assumed to be normally distributed with mean 0.2 and unit
standard deviation. . . . . . .. ... L
Illustration of the experimental set-up and photos of the hardware.

Cameras trajectories as obtained from our experimental implementa-
tion of Algorithm 2. See Table 1 for the cameras parameters. Notice
that the trajectory is robust to noise, as well as small overshoots and
undershoots introduced by hardware and network uncertainty. These
inaccuracies in the individual camera trajectories do not significantly
affect coordination. The cameras trajectory is also robust to momen-
tary failures, as shown at time ¢t =~ 600s. . . . . . ... .. ... ...
Screen shot of the GUI from our experiments, before an intruder has
entered the environment . . . . . . .. ... ... L.
Screen shot of the GUI from our experiments, after an intruder has

entered the environment . . . . . . . . .. .. ... ..
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In Fig. 11(a) we show the detection times for our second experiment,
in which smart intruders appear at worst case times and locations.
The detection times of this experiment are depicted by a solid blue
line. Notice that the detection times are smaller than the upper bound
predicted in Section 2. In Fig. 11(b) we show the detection times for
each trial of our third experiment, in which smart intruders appear at
random times and locations. The detection times of this experiment
are depicted by a solid blue line. The solid black line corresponds to
the average of the experimental detection times. For the considered
configuration of cameras, the lower bound ADT” in (5) (dashed green
line), ADT(X®) as in (6) (dotted red line), and the worst case upper

bound (dashed light blue line), which is calculated by multiplying the

max+Tm1n

2min

lower bound on ADT”* by the quantity ~
Simulation of REC with n = 5 cameras with maximum speed v™** =
0.67 m/s and patrolling windows constraints. In Fig. 12(a) we show
the cameras trajectories starting from random positions. The dashed

lines refer to the trajectories of the active boundaries. In Fig. 12(b)

we report the dynamics of the longest patrolling time 7/"**. Notice

that 7/°%% converges to the optimal value 7* = 6.2023 s (dash-dot line). 52

from (7) are reported. 47
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Simulation of REC with n = 5 cameras with non-uniform maxi-
mum speeds v ~ U [0.45,0.75] m/s and no patrolling windows
constraints. In Fig. 13(a) we show the cameras trajectories start-
ing from random positions. The dashed lines refer to the trajectories
of the active boundaries. In Fig. 13(b) we report the dynamics of
~max

7] Notice that 7,%* converges to the optimal value 7" = 6.65 s

(dash-dot line). . . . . . . .. . ...
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1 Introduction

Coordinated teams of mobile agents have recently been used for many tasks requiring
continuous execution, including the monitoring of oil spills [1], the detection of forest
fires [2], the tracking of border changes [3], and the patrolling of environments [4].
The use of mobile agents has several advantages with respect to the classic approach
of deploying a large number of static sensors, such as improved situation awareness
and fast reconfigurability.

Decreasing hardware costs, along with ever increasing efficiency of numerical
algorithms has garnered increased interest in research problems relating specifically
to the use of camera networks for patrolling tasks. Camera networks can be take a
variety of forms. However, camera networks usually consist of a set of IP or network
cameras which are utilized in order to gain visual data about a specific region of
interest [5]. These networks differ from other sensor networks in the sense that
cameras are directional sensors, whose sensing range is very suceptable to visual
obstructions in the region of interest. This, combined with the high amounts of
uncertainty and large computational costs that are inherent in image processing
applications, makes for a unique class of challenging research problems.

Since surveillance areas of interest can be very large, camera networks often
contain many cameras. With the high computational complexity that is involved
with processing image streams in real time (generally 30 FPS), centralized algorithms
are not always feasible. Therefore, there is significant interest in development of
distributed strategies for accomplishing tasks in large camera networks. Along with

the advantage of faster processing, distributed algorithms are often advantageous in



camera networks by eliminating the need to transmit data to a central processor,
which might be impossible in certain cases.

Camera network applcations usually contain both computer vision and control
aspects. Control theory is generally used to determine what is the best way to obtain
data, and how to react to the conclusions that are drawn from the data. Computer
vision tools are generally used to analyze visual data, and draw conclusions despite
the large amounts of uncertainty. Although almost all camera network problems
contain aspects from both of these fields, most research literature focuses on one of
the two. In this thesis, we will focus on the specific control problem of coordinating
camera motion to detect intruders in a specific type of surveillance region. We
develop a distributed strategy which will allow for an architecture that is robust to

failures and has performance guarantees.

1.1 Problem Description

We consider a network of identical Pan-Tilt-Zoom (PTZ) cameras for video surveil-
lance, and we focus on the development of distributed and autonomous surveillance
strategies for the detection of moving intruders. We make combined assumptions
on the environment to be monitored, the cameras, and the intruders. We assume
the environment to be one dimensional, in the sense that it can be completely ob-
served by a chain of cameras by using linear motion only (the perimeter surveillance
problem is a special case of this framework). We assume the cameras to be subject
to physical constraints, such as limited field of view (f.o.v.) and speed, and to be

equipped with a low-level routine to detect intruders that fall within their f.o.v.. We
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assume intruders to be smart, in the sense that they have access to the cameras
configuration at every time instant, and schedule their trajectory to avoid detection
for as long as possible. Since the probability of success of an intrusion increases with
the time an intruder remains undetected in the environment [6], we propose cameras
trajectories and control algorithms to minimize the worst case detection time and

the average detection time of smart intruders.

1.2 Related Work

Of relevance to this work are the research areas of robotic patrolling and video
surveillance. In a typical robotic patrolling setup, the environment is represented by
a graph on which the agents motion is constrained, and the patrolling performance is
given by the worst-case detection time of static events. In [7, 8, 9] performance eval-
uations of certain patrolling heuristics are performed. In [4] and |2], an efficient and
distributed solution to the (worst-case) perimeter patrolling problem for robots with
zero communication range is proposed. In [10] the computational complexity of the
patrolling problem is studied as a function of the environment topology, and optimal
strategies as well as constant-factor approximations are proposed. With respect to
these works, we consider smart intruders, as opposed to static ones, and we study
also the average detection time, as opposed to the worst case detection time only.
In the context of camera networks the perimeter patrolling problem is discussed in
[11, 12|, where distributed algorithms are proposed for the cameras to partition a
one-dimensional environment and to coordinate along a trajectory with minimum

worst-case detection time of static intruders. Graph partitioning and intruder detec-
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tion with minimum worst-case detection time for two-dimensional camera networks
are studied in [13]. We improve the results along this direction by showing that the
strategies proposed in |11, 12| generally fail at detecting smart intruders, and by
studying the average detection time of smart intruders. Complementary approaches
based on numerical analysis and game theory for the surveillance of two dimensional
environments are discussed in [14, 15]. Finally, preliminary versions of this work
were presented in [16, 17|, and a journal version of this work is presented in [18].

In the context of video surveillance most approaches consider the case of static
cameras, where the surveillance problem reduces to an optimal sensor placement
problem. In [19, 20], sensor placement problems are considered in a static camera
network with the goals of maximizing the observability of a set of aggregate tasks
that occur in a dynamic environment, and of visual tagging, respectively. In [21], a
resource aware scheme for coverage and task assignment is considered. In the case
of surveillance in active (PTZ) camera networks, there have been many attempts to
formulate feasible approaches for camera control in order to detect and track targets,
adapt sensor coverage, and achieve high image resolution; see for instance |22]. In
[23], the authors consider an image-based control scheme in a setup containing a
“master” camera for detection and tracking. In [24, 25|, methodologies for obtaining
high-resolution images in camera networks containing both static and active cameras
are developed and tested in a virtual environment. In [26] a similar problem of op-
portunistic visual sensing is considered. In [27], the problem of coordinating camera
motion is addressed using a game-theoretic approach with the assumption that the

entire environment is covered at all times. Finally, the problem of context-aware

12



anomaly detection is studied in [28]. We depart from the aforementioned works with
PTZ camera networks in the following ways. First, we focus on the problem of in-
truder detection, rather than tracking or scene analysis, and we define appropriate
performance metrics for this problem. Second, we do not make the assumption that
cameras can cover the whole environment at all times, and we develop coordination
methods for the cameras to surveil the environment. Third and finally, we do not
require a source of global information for our algorithms, so that our methods are

fully distributed.

1.3 Contributions

The contributions of this work are as follows.

First, we mathematically formalize the concepts of cameras trajectory and smart
intruder, and we propose the trajectory design problem for video surveillance. We
formalize the worst-case detection time and average detection time criteria, and we
characterize lower bounds on both performance criteria.

Second, we propose the Equal-waiting cameras trajectory, which achieves mini-
mum worst case detection time, and constant factor optimal average detection time
(under reasonable assumptions). The Equal-waiting trajectory is easy to compute
given a camera network, and it is amenable to distributed implementation. In fact,
we develop a distributed coordination algorithm to steer the cameras along an equal-
waiting trajectory. Our coordination algorithm converges in finite time, which we
characterize, and it requires only local communication and minimal information to

be implemented.
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Third, we design a distributed reconfiguration algorithm for the cameras to react
to failures and to adapt to time-varying topologies. In particular, our reconfiguration
algorithm takes advantage of gossip communication to continuously partition the
environment and, at the same time, coordinate the motion of the cameras to optimize
the detection performance.

Fourth, we illustrate our findings through simulations and experiments. Our
simulations verify our results for different network configurations. Our experiments
validate our modeling framework and assumptions, and show that our methods are
robust to cameras failure, model uncertainties, and sensor noise.

We finally note that our algorithms are applicable beyond the domain of camera
networks. For instance, we envision applicability to real-time scheduling for manufac-
turing, where tasks with spatial and temporal constraints are allocated, and robots

need to complete these tasks while satisfying the given constraints [29, 30, 31].

1.4 Organization

The organization of the remainder of this thesis is as follows. In Section 2, we formal-
ize the problem by introducing our performance metrics, the worst case and average
detection times. In Section 3, we propose the Equal-Waiting Trajectory, and provide
bounds on its performance. In this section, we also provide a distributed algorithm
to steer the cameras into the Equal Waiting trajectory, and provide a proof of its
convergence. Section 4 provides the proof of the performance bounds introduced in
the previous section. In Section 5, we provide the results of our simulations and

hardware experiments. Section 6 provides a distributed algorithm for cameras re-
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configuration, which can be used to automatically adjust camera patrolling windows
for optimumal performance. Section 7 provides a brief summary and some ideas
for future research. Finally, the actual code used for hardware implementations is

provided in the Appendix.
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2 Problem Formulation

In this section we describe the one-dimensional surveillance problem under consider-

ation, and we present some useful definitions and mathematical tools for its analysis.

2.1 Problem setting and notation

Consider a set of n € N identical active cameras installed along a one dimensional
open path (boundary) T" of length L (see Fig 1). For ease of notation and without
affecting generality, we represent I" with the segment [0, L], and we label the cameras
in increasing order from c; to ¢, according to their physical position on I'. We make

the following assumptions:
(A1) the f.o.v. of each camera is represented by a point on T,

(A2) the speed v; of the i-th camera satisfies |v;| € {0, v}, with v"** € R.,.

i
For assumption (A2) to be satisfied, we let each camera be equipped with a low-
level controller that maintains the speed of its f.o.v. at 0 or v®.! Let v™® =

max{vP"®*, ... P

rYn
Let z; : R>g — I' be a map, such that z;(t) specifies the position on I' of the i-th
f.o.v. at time ¢. We define the patrolling window A; = [¢;, ;] C I of camera ¢; as the
segment of I' containing the f.0.v. of camera ¢; at all times, where ¢; and r; denote

the start and end points of the segment A;, respectively. We assume the patrolling

windows to be given and constant in time (except for our analysis in Section 6).

'For instance, in order to move the camera f.0.v. along its panning direction, the controller may
set the panning velocity of the i-th camera to ¢; = v /(a;sec?()), where o denotes the panning

angle, and q; is the distance of the i-th camera from I'. See Section 5.2 for a related example.
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Figure 1: This figure shows five cameras installed along a one dimensional open path.
The field of view of each cameras is a point on the path. Cameras coordinate their
motion to detect smart moving intruders along the path.

We additionally assume that ¢, =0, r, = L, and ¢; = r;_1, with ¢ = 2,...,n, so
that {A;,...,A,} is in fact a partition of I'.? Finally, let d; be the length of A;, let
d™a = max{d,,...,d,} and d™®* = min{dy,...,d,}, and define the longest cameras
sweeping time as 7™ = max{m,...,7,}, where 7; = d;/v"* is the sweeping time
of camera c;.

A cameras trajectory is an array X = {x1,...,2,} of n continuous functions
describing the motions of the cameras f.0.v. on I'. We focus on periodic cameras
trajectories, for which there exists a duration 7' € R>q such that X (t+7) = X(¢) or,
equivalently, z;(t+7') = z;(t) for alli € {1,...,n}. We say that a cameras trajectory
is synchronized if there exists a time ¢; € [0, T] such that z;(t;) = r; = li11 = xi11 ()

for each pair of neighboring cameras ¢; and ¢;11.

Remark 1. (Two dimensional environment and f.o.v.) Our assumptions of

one dimensional environment and point-wise f.o.v. do not limit applicability of our

2As discussed below, this assumption ensures detectability of intruders (see equation (4)).
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results to practical cases. To see this, assume that the f.0.v.s of the cameras are two
dimensional surfaces on the ground plane. Assume that cameras sweep the environ-
ment, and that f.0.v.s of neighboring cameras intersect at some locations. Partition
the environment into patrolling windows, in a way that each camera can entirely
sweep ils assigned region. Lel T; be the time needed by camera c; to sweep ils region,
and let d; = T;v;, where v; is the speed of camera ¢;. It is now clear that (i) synchro-
nization of the cameras depend only upon 7;, v;, and d;, as captured by our simplified
framework, (ii) our synchronization algorithm is applicable for the realistic case of
cameras with two dimensional f.0.v.s, since it only requires the parameters t;, d;, and
v; to be implemented, and (iii) the detection performance obtained on our simplified
camera model is a conservative bound for the performance with cameras with two
dimensional f.o.v.s, because at each time a camera with point-wise f.o.v. can only

detect intruders contained in a region of zero area. 0

2.2 Model of intruder and performance functions

We consider the problem of detecting intruders appearing at random times and
moving on I'. We model an intruder as an arbitrarily fast point on I'; and we let the
continuous map Zy, ,, : R>¢, — I' be defined such that Z;, ,, (t) describes the position
of the intruder at a time ¢, where ¢y, and py = 7y, p,(to) are the time and location at
which the intruder appears, respectively. We focus on smart intruders, which have
full knowledge of the cameras trajectory and select their motion to avoid detection

for as long as possible. More formally, given an initial time ¢, € R, an initial point

18
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Figure 2: This figure shows a 27™*-periodic cameras trajectory in which cameras
c1 and ¢y are synchronized (z1(t) = x5(t) for t = k7™ with k € N.g; see Section
2.1), while cameras cs and c3 are not synchronized. Notice that, because of the syn-
chronization among cameras, intruder e;, and in fact any smart intruder appearing
between cameras c¢; and co, is detected at time k7™ for some k£ € Nyy. Con-
sequently, the worst-case detection time for intruders appearing between cameras
¢y and ¢y is 27, Intruder eg, and in fact any smart intruder appearing between
cameras ¢ and c3, may avoid detection by properly choosing its trajectory.

po € I', and a cameras trajectory X, the trajectory Z;  of a smart intruder satisfies

t0,po

Tdet (I Y

to,po?

X) — Imax Tdet(Ito,poa X) — to,

Ztp,p0

where Thet(Zt, po» X ) is the time at which the intruder is detected by the cameras,

that is,

Tdet(Itoypo’ X) = min{{t : Itmpo (t) < X(t)}v OO}

Notice that the trajectory Z;

1o.po 18 In general not unique.

We consider two criteria for the detection performance of a T-periodic cameras

trajectory, namely the worst-case detection time (WDT), and the average detection
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time (ADT). These two criteria are formally defined as

WDT(X) = sup Tuet(Zy, o X) — to, (1)
t0,Po
and
1 /7
ADT(X) = — Toer(TF X) — t dpdt. 2
) =77 [ [ Tl )=ty e

In other words, the WDT criterion measures the longest time that a smart intruder
may remain in the environment without detection, while the ADT criterion measures
the average time that a smart intruder may remain in the environment without
detection, over the boundary I'" and the periodicity T

The worst case detection time criterion for static intruders, namely WDTs, is

defined in [32] as

WDTs(X) =sup{t —ty : t >to,p0 € X(t)}, (3)

to,po

and it corresponds to the longest time for the cameras to detect a static intruder, or
simply event, along I'. We next informally discuss the relation between WDT and

WDTs, and we refer the reader to [10, 11, 32| for a proof of these results. Let
WDT* = m)gn WDT(X), and WDTs" = m)}n WDTs(X).

Clearly, WDT(X) > WDTs(X) for every cameras trajectory X, as static intruders

do not move to avoid camera f.0.v.s. For instance, as shown by the example in Fig.

20



2, if a cameras trajectory X is not synchronized but covers every location of I', then
WDTs(X) < oo and WDT(X) = oo. Additionally, because the patrolling windows
define a partition of I, it can be easily verified that the static worst case detection

time satisfies

WDTs* = 278,

max

and that any 27™*-periodic cameras trajectory achieves minimum static worst-case

max

detection time. Similarly, any synchronized 27™®-periodic cameras trajectory X

satisfies (see Fig. 2)

WDT(X) = 27, (4)

In fact, since the f.0.v.s of neighboring cameras intersect at least once in any interval

max

of length 27™#* intruders cannot avoid detection for more than 27™#. Thus, any

maX_periodic cameras trajectory achieves minimum worst-case detec-

synchronized 27
tion time (WDT and WDTs). This discussion motivates us to restrict our attention

to periodic and synchronized cameras trajectories.

Problem 1. (Design of cameras trajectories) Consider an open path partitioned
among a set of n cameras, and let 7** be the longest cameras sweeping time. Design

a cameras trajectory X* satisfying

ADT(X*) = ADT* = min ADT(X),

XeN

21



max

where €2 1s the set of all synchronized 2™ -periodic cameras trajectories.

Remark 2. (Optimal patrolling windows) We assume that the patrolling win-
dows are given and form a partition of the path I'. With these assumptions, the
worst-case detection time satisfies WDT* > WDTs* > 27 and any synchronized
2™ _periodic cameras trajectory achieves the lower bound (see the above discussion).

If the patrolling windows are not given but are still required to be a partition
of I', then the longest cameras sweeping time, and hence the worst-case detection
performance, can be minimized by solving a min-max graph partitioning problem
[10, 32, 17]. We will discuss this aspect in Section 6, where we develop an algorithm
to simultaneously partition the environment and coordinate the motion of the cameras
to optimize the detection of intruders.

If the patrolling windows are not required to be a partition of I', then the bound
WDTs* may be smaller than 217*. We refer the reader interested in this case to [6,
Congecture 1] and [35]. O

A second focus of this paper is the design of distributed algorithms to coordinate
the cameras along a desired trajectory. We consider a distributed scenario in which
cameras ¢; and ¢; are allowed to communicate at time ¢ only if [j—i| = 1 (neighboring
cameras) and x;(t) = x;(t). Although conservative, this assumption allows us to
design algorithms implementable with many low-cost communication devices; see
Section 5.2. Notice that additional communications cannot decrease the performance

of our algorithms.

Problem 2. (Distributed coordination) For a set of n cameras on a one-dimensional

22



open path, design a distributed algorithm to coordinate the cameras along a trajectory

with minimum average detection time of smart intruders.
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3 Equal-Waiting Cameras Trajectory and Coordi-
nation Algorithm

In this section we present our results for Problems 1 and 2. In particular, we propose
a cameras trajectory with performance guarantees for the average detection time, and
a distributed algorithm for the cameras to converge to such a trajectory. We remark
that, in general, cameras trajectories with minimum average detection time can be
designed via standard, yet computationally intensive, optimization techniques. Such
an approach is adopted for instance in [34], where the problem of designing robots’
strategies is cast into an optimal control framework and a gradient-based algorithm
is used to compute a locally optimal solution, and in [35, Chapter 7|, where optimal
cameras trajectories are explicitly computed for environments satisfying d™* < 24™®
and for cameras moving at unit speed. The approach taken in this Section is different,
as our objective is to gain a comprehensive insight into the cameras surveillance
problem, and to design surveillance strategies that are easily implementable and

reconfigurable.

3.1 Equal-waiting trajectory
The cameras trajectory that we propose can informally be described as follows:

(Equal-waiting trajectory) Fach camera continuously sweeps its patrolling window
at maximum speed, and it stops for some waiting time when its f.0.v. reaches an
extreme of its patrolling window. For each camera, the waiting times at its two

extremes are equal to each other. Additionally, the waiting times of each camera are
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dy

ds

dy = diax

plo=r1
d1 \
l4=0

T= ETmax

distance

time

Figure 3: This figure shows the Equal-waiting trajectory for 4 cameras. Notice that
(i) the cameras are synchronized, (ii) the trajectory is 27max-periodic, and (iii) the
waiting time of each camera is the same at both its boundaries.

chosen so that the resulting cameras trajectory is synchronized and periodic. See

Fig. 3 for an illustrative explanation. O

Because we let each camera wait for the same amount of time at the two extremes
of its patrolling window, we call this cameras trajectory Equal-waiting trajectory.
An example of Equal-waiting trajectory is in Fig. 3, and a formal description is in
Trajectory 1.

As discussed in Section 2, the Equal-waiting cameras trajectory is optimal with
respect to the worst-case detection time criterion. Indeed, the Equal-waiting cameras

trajectory is synchronized and 27m#%

-periodic. We now characterize the average
detection time performance of the Equal-waiting trajectory. A proof of this result is

postponed to the Section 4.

Theorem 3.1. (Performance of Equal-waiting trajectories) Let X be the

Equal-waiting trajectory defined in Trajectory 1. Then,
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Trajectory 1: Equal-waiting trajectory (camera c;)

Input DT s U T, U

Set twi(k) = (k+ )7 — 71, k= -1,0,...;

if i is odd then
xzi(t) =r; for wi(k—1) 4+ 7, <t < w;(k)
x;(t) = =¥ (t — w;(k))+r; for wi(k) <t <wi(k)+ 7
xi(t) = 4; for w;(k) + 1 <t <w;(k+1)
x;(t) = o (t — w;i(k+1))+4; for w;(k+1) <t <w;(k+1)+7

else if i is even then

xi(t) = ¥; for wi(k—1) 4+ 7, <t < w;(k)
x;(t) = o (t — wi(k+1))+4; for wi(k) <t <w(k)+ 7
zi(t) =1 for w;(k) + 7 <t <w;(k+1)
xi(t) = =¥ (t — w;(k))+r; for w;(k+1) <t i(k+1)+ 7

1. The average detection time of a smart intruder satisfies the lower bound:

ADT* > = Z,Umax 2

2. The Equal-waiting trajectory X4 satisfies
ADT(X®) = L pmax 1 zn: Xy
2 L — R A

3. The Equal-waiting trajectory X satisfies

ADT(Xeq) ] Fmax 4 7_min (n + 1)dmax
Eer—— min p P
ADT* — grmin 7 9qmin ’

26



4. Ifvex =1 foralli € {1,...,n}, then the Equal-waiting trajectory X% satisfies

(8)

ADT eq max min
ADT(X*) < min d +'d | 3+/n ‘
ADT™ 2dmin 4

The following comments are in order. First, the average detection time of the
Equal-waiting trajectory is within a constant factor of the optimal if either 702 /7min
or n are constant. Second, if all patrolling windows have the same sweeping time,
that is 7™M = 7™ then our Equal-waiting trajectory is an optimal solution to
Problem 1 (it achieves minimum worst-case and average detection times). Moreover,
our lower bound (5) is tight and holds with equality if 7m2% = 7™ Third, the lower

bounds in Theorem 3.1 are independent of the ordering of the patrolling windows.

Fourth, if
1. all cameras move at unit speed,

2. there exists an index h € {1,...,n} such that d;, > d; foralli € {1,...,n}\{h},

and

3. forall i € {1,...,n}\ {h} the patrolling windows satisfy

max

then (see the proof of Theorem 3.1 and Fig. 4(b))

ADT(X®) 3+ /n

ADT* 4 (10)
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Fifth and finally, different cameras speeds can be taken into account in our bound
(8). In fact, if v"* /vf® < C for all i,j € {1,...,n} and for some C' € R, then (see

the proof of Theorem 3.1)

eq max min
ADT(X )gmin C(d J.rd )72+C(1+\/ﬁ) |
ADT™ 2dmin 4

3.2 Distributed Algorithm for Camera Coordination

We now design a distributed feedback algorithm that steers the cameras towards
an Equal-waiting trajectory. Our algorithm to coordinate the cameras along an
Equal-waiting trajectory is described in Algorithm 2, where for convenience we set

xo(t) = £1 and x,41(t) = 7, at all times.

Algorithm 2: Distributed camera coordination along an Equal-waiting trajec-
tory (camera c;)

Input ST s U, Th, U
Set Pwp =T — 1 xo(t) =41 and x4 () = 1, VE
1 Move towards £; with |v;(t)] = vi"2¥;
while True do
if x;(t) = x;—1(t) or z;(t) = x;41(¢) then

Wait until time ¢ + w;;

M

w

max.

Move towards the opposite boundary with |v;(¢)| = v*®*;

-

An informal description of Algorithm 2 follows.

(Distributed coordination) Camera ¢; moves to ¢; (line 1) and, if ¢ > 1, it waits until
the f.o.v. of its left neighboring camera ¢;_; occupies the same position (line 2).

Then, camera ¢; stops as specified in Trajectory 1 (line 3), and finally move to r;
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(line 4). Camera c¢; (resp. ¢,) moves to 75 (resp. £,_1) as soon as its f.o.v. arrives

at {1 (resp. 7). O

It should be observed that, by construction, cameras sweep their patrolling win-
dows (lines 1 and 4), and that the cameras trajectory obtained via Algorithm 2 is
synchronized and Equal-waiting. Moreover, since cameras wait until the f.o.v. of a
neighboring camera occupies the same position (line 3), our coordination algorithm is
robust to cameras failures and motion uncertainties. A related example is in Section
5. Regarding the implementation of Algorithm 2, notice that each camera is required
to know the endpoints of its patrolling window, its sweeping time and the maximum
sweeping time in the network, and to be able to communicate with neighboring cam-
eras. The following theorem characterizes the convergence properties of Algorithm
2, where we write X (¢ > t) to denote the restriction of the trajectory X (¢) to the

interval ¢ € [t, 00).

Theorem 3.2. (Convergence of Algorithm 2) For a set of n cameras with sweep-
ing times Ti,..., Ty, let X(t) be the cameras trajectory generated by Algorithm 2.

Then, X (t > nt™) is an Fqual-waiting trajectory.

Proof. Notice that the f.o.v. of camera c; coincides with the f.o.v. of camera c,
within time max{27, o} < 27™*. Then, the f.o.v. of camera ¢; coincides with the

max

f.o.v. of camera ¢;;1 within time (i + 1)7™**. Hence, within time n7™* the cameras

trajectory coincides with an Equal-waiting trajectory in Trajectory 1. The claimed

statement follows. O

Notice that our cameras trajectory and coordination algorithm are easy to com-
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pute, valid for every number of cameras and environment configuration, and their

performance are guaranteed to be within a bound of the optimum.
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4 Proof of Main Theorem

This section contains a proof of Theorem 3.1. We start with a lower bound for the

average detection time.

Lemma 4.1. (Lower bound on the average detection time) For a set of n

cameras with mazimum velocities v™, ... v

, U and sweeping times T1,..., T, the

max

average detection time of a 27™*-periodic cameras trajectory X satisfies the lower

bound

Proof. Since a smart intruder moves away from the camera f.o0.v., the detection time
of a smart intruder appearing at time ¢ and at location p € [¢;, r;] satisfies the lower

bound

Ti dz
/ Tdet (It,p) —1 dp = / Tdet (It,p) —t dp Z Tup7
4; 0

where d; = r; — {; and Ty, equals

0 gy (4) + 2(d; — @ (t Gy —
/ zi(t) + 2( x())dp+/ $()dp7
0 T

max
Ui HOR

if the camera ¢; first detects intruders appearing at locations p > x;(¢). Analogously,
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if the camera ¢; first detects intruders appearing at locations p < z;(t)

d;
/ Tdet (It,p) —t dp Z Tdowna
0

where Tyown €quals

[y [ m0rd s,
0 i @ (t) U;

To see this, consider the first case. The detection time of every intruder appearing
at location p > x;(t) is at least (d; — ;(t))/v™®* (time needed by camera ¢; to reach
r; starting from z;(t)). Likewise, the detection time of every intruder appearing at
location p < x;(t) is at least (x;(t) + 2(d; — z;(t)))/v™** (time needed by ¢; to reach
r; and ¢; starting from x;(t)). The other case follows similarly.

It can be verified by simple manipulation that T}, = Tyown = d? /v™¥. Finally, it

follows from (2) and 7; = d; /v that

. 1 . max,.2
ADT(X TL/ /Tdet o) = tdpdt > Z P Z;vi 7.

O

It should be observed that the bound in Lemma 4.1 is tight for the case of a single
camera, and it is conservative otherwise (see Fig. 4(a) and 5). We now characterize

the average detection time of the Equal-waiting trajectory.

Lemma 4.2. (Equal-waiting trajectory performance) For a set of n cameras

with sweeping times Ty,...,T,, let X be the Equal-waiting trajectory defined in
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Trajectory 1. Then

1 1 <
ADT(Xeq) < max_|_ U;nax 2) (11)

=1

Proof. Observe that the function ADT(X®) can be written as

ADT(X*) =

1 n 2rmax T
Taet(Zi,) — t) dpdt.
27—maXL;/O éi ( dt( t,p) ) p

Let ¢ be odd and recall the description of x;(t) given in Trajectory 1. Due to sym-

metry, it can be verified that

Fmax Fmax

/ / Tdet Itp _t dpdt - 2/ / Tdet th ) dpdt

Let 0 <t < 7™ — 7, and notice that z;(t) = r;. Observe that Tye(Z;,) = 7™ for

all p € [€;,7;), and Tyet(Zy ) = 0 for p = r;. Then

Fmax__ 2

/ / (Tuet(Zy ) — t) dpdt = (G el max) g, (12)

Let 7™ —7; <t < 7™ Observe that Tyei(Zy,) = 77 for p € [4;, 2(t)), Taet(Ztp) =

0 for p = z(t), and Tye(Zy ) = 27™* for p € (x;(t), r;]. Thus,

max

/ / Tdet Itp ) dpdt

rmax

:/ / (T — ) dp+/ (27 —t) dpdt.
Tmax_r . Jf; zi(t)

2
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Since z; = r; + (t — (7™ — 7;)u**) (see Trajectory 1), it follows from the above
expression that

smax max
T

/ / (Taet (Ztp) — t) dpdt = / (27 — t)d; — (T — o dt

maxiTi

1
— 7_m;aw<,7_2vmax + —dﬂ'?.
2 i v 2 i

(13)

The statement follows by combining (12) and (13). O

We now conclude with a proof of Theorem 3.1.

Proof of Theorem 3.1: From Lemma 4.1 and 4.2 we have

ADT(X™) 1 Le™ 1 Ly
ADT 2 25 e 2 25 dm
1 Lrmax . qmin
5 min S, 2rmin 7

where we have used L = > d; and 7™ < 7, for all ¢ € {1,...,n}. To show the

second bound notice that

ADT(X*) 1 Lrmax 1 L L
T —_— <

1
ADT" > "oy dm 272y 4 . 2 ggun

where the last inequality is obtained by letting 7;/7™* — 0 for all i except for one

segment (7;/7™% = 1 for some 7, and d; > d™®). Since L < nd™ we conclude that

ADT(X®) 1 pd™  (n+ 1)dm
— <4 ——< —
ADT*  — 2 ' 2dmin = 2min
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We now show the last part of the Theorem. Assume that all cameras move at

unit speed and, without affecting generality, that d; = d™®*. Notice that

ADT(X®) 1 Lymax 1 >did; 1 (1 1+, yz)

ADT* 2 + 22?:1 d;7; T2 * 230 dz T2 1+ Z?:2 y;

where y; = d;/d;. Consider the minimization problem

min K,
(14)

subject to  1+> "y < K1+ >0 ,yd),

and the associated Lagrangian function [36]

E:K+)\<1—K+Zyi—l{yi2>.

=2
Following standard optimization theory, necessity optimality conditions for the min-

imization problem (14) are

oL o — 1—)\<1+ny> =0,
=2

oK
oL
5 =0 = AN1-2Ky;) =0, fori €{2,...,n},
Yi
Complementary slackness: A (1 - K+ Z Yi — Kyf) = 0.
=2

From the first and second equations we obtain A # 0 and y; = 1/(2K). Then, the

third equation yields K = (1 + +/n)/2. Since y; > 0, the statement follows. O
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5 Simulations and Experiments

In this section we report the results of our simulation studies and experiments. Be-
sides validating our theory, these results show that our models are accurate, that
our algorithms can be implemented on real hardware, and that our algorithms are

robust to sensor noise and model uncertainties.

5.1 Simulations

ADT(X*9) ADT(X*9)
ADT* ADT
250 e 5
.... o®
3+ \/ﬁ .......... . qmax +-dm ..... ..0'-..-.
2 1 L e Qdmu:...oo'o
- 3 ...-".“. 3 +4\/ﬁ
.® °® .
15 .’..:. LR LS 2 .'...
Y ! I °s *es,$ *ge . . 0 IS0C,
(il il
@ 1 1 1 1 3
10' 10 20 30 a0 50 70 Yo 10 20 30 a0 50 n

(a) (b)

Figure 4: In Fig. 4(a) we report the ratio ADT(X®)/ADT" as a function of the
number of cameras n (blue dots), and the bound (3 + y/n)/4 in Theorem 3.1 (red
dots). For the considered configurations, the bound (d™&* + d™")/(24™") is much
larger than the experimental data, and it is not considered here. The lengths d;
of the patrolling windows are uniformly distributed in the interval (0, 1], with d; =
d™* = 1. We assume that cameras have unit speed. In Fig. 5 we report the ratio
ADT(X®1)/ADT* as a function of the number of cameras n (blue dots), and the
bounds in Theorem 3.1 (black dots and red circles). The lengths d; of the patrolling
windows are chosen as d; = d™ =1 and d; = (1 ++/n)"! for all i € {2,...,n}.
As predicted by equation (10), the performance bound in equation (8) is tightly
achieved.

Three simulation studies are presented in this section. For our first simulation
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Figure 5: In this figure we report the ratio ADT(X®1)/ADT* as a function of
d™ax /dmin (blue dots), and the bounds in Theorem 3.1. For each value of dma*/d™n,
the lengths of the patrolling windows are uniformly distributed in the interval
[d™in /dmax 1], with d; = d™>* = 1. Notice that the theoretical bounds are com-
patible with the experimental data.

study, we let the number of cameras n vary from 2 to 50. For each value of n, we

generate 50 sets of patrolling window with lengths {dy, ..., d,}, where d; = d™* =1

m, and d; is uniformly distributed within the interval (0,1] m , for all i € {2,... n}.

max
3

For each configuration we let v = 1 m/s for all cameras, we design the Equal-
waiting trajectory X, and we evaluate the cost ADT(X®) and the lower bound
ADT* from equation (5). We report the result of this study in Fig. 4(a). Notice
that, when the number of cameras is large and the lengths of the patrolling windows
are uniformly distributed, the bound in (8) is conservative. On the other hand, if
the lengths of the patrolling windows are chosen as in (9), then the bound in (8) is
tightly achieved (Fig. 4(b)).

For our second simulation study, we let the number of cameras be fixed (50

cameras), and we vary the value d™¥/d™" between 2 and 25. Specifically, we let
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dy = d™* =1 m, and d;, with ¢ = 2,...,50 be uniformly distributed within the in-
terval [d™"/d™a* 1] m. For each value of d™®*/d™™" we generate 50 sets of patrolling
windows with lengths {d,,...,d,}, compute the Equal-waiting trajectory X°, eval-
uate the cost ADT(X®), and compute the lower bound in equation (5). The results
of this simulation study are reported in Fig. 5, where we observe that the theoretical
bounds derived in Theorem 5 are compatible with the experimental data.

In our third simulation study we validate the effectiveness of our coordination
algorithm. We consider a set of 4 cameras with pre-specified patrolling windows and
unit speed. The cameras trajectory generated by Algorithm 2 is reported in Fig.
6. Observe that our coordination algorithm drives the cameras towards an Equal-
waiting trajectory, and it is robust to failures and motion uncertainty. In particular,
(i) coordination is achieved for cameras starting at random initial positions, (ii) the
algorithm is robust to temporary cameras failure, and (iii) the average detection time

degrades gracefully in the presence of motion uncertainties.

5.2 Experiments

In this section we detail the experiments we have conducted to validate our theoretical
findings and simulation results. In order to perform the experiments, it it is necessary
to utilize a variety of tools from computer vision and computer science in order to
practically implement the code. We start by introducing these concepts, and then

move on to describe the experimental results
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Figure 6: In this figure we validate Algorithm 2 for a set of 4 cameras with unit speed.
Cameras start at random positions inside their patrolling window and achieve coor-
dination at time 150. Notice that the algorithm recovers from the temporary failure
of camera c; between time 340 and 440. Moreover, the coordination performance
of the algorithm degrade gracefully in the presence of noise affecting the cameras
motion of the cameras (time 700). In this simulation the cameras motion noise is
assumed to be normally distributed with mean 0.2 and unit standard deviation.

5.2.1 Programming and Computer Vision Tools

Multi-Threading Since the algorithm that we are trying to implement is dis-
tributed, it is necessary to find a way to simulate multiple, independent processes on
the same machine. The tool that allows us to do this is called multi-threading.

In multithread programming, we are able to spawn multiple threads from the
same master thread. This allows us to more efficiently use the computer’s processing
power. FEach of these threads is completely independent, and has its own set of
variables associated to it. For the purposes of the problem at hand, this is useful
because we can assign each camera involved in the experiment its own thread, while
still being able to control the program and receive information about the state of the

system through the master computer.
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Figure 7: Illustration of the experimental set-up and photos of the hardware.

Object Oriented Programming Object oriented programming is a technique
which allows us to create an entity called an object, which can be thought of as a
type of data structure. Each object has a variety of values and functions associated
to it, and is able to pass and receive information to the other objects. This provides
an alternative way of viewing a program, as a collection of interacting objects, rather
than a list of tasks.

One instance when this type of programming scheme is useful is in a scenario
where it is necessary to run very similar codes multiple times. In our experiments,
object oriented programming is very useful, as it allows us to define a data structure
(object) called a camera, to which we can associate the various values that are crucial
to the program, such as urls necessary to send commands to the camera, camera

position and timestep data, and current state information.

Queuing Queuing is the mechanism which allows us to pass information between
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the multiple threads that are running on each camera. The queuing functionality
allows us to assign to each object (camera) a “queue”, in which values or commands
can be placed. The associated camera can then draw from its queue in order to
receive the information it contains. Items that are placed in the queue are ordered,
and are drawn out of the queue in a “first in, first out” fashion.

This functionality is extremely useful when it is necessary to control the rate or
timing at which commands are sent to an object. In the context of our experiement,
we utilize the queues associated to each camera in order to relay information about
when a camera has finished sweeping its assigned region. That is, when a camera
has reached an extreme point of its assigned partition, it places a message in its
neighboring camera’s queue and simultaneously checks its own queue to see if it has
received a message from the neighboring camera. If a message is there, the camera
knows that the neighboring camera is also at the extreme point, and hence it proceeds
with the execution of the Equal-waiting trajectory algorithm. If no message is there,
the camera knows that the neighboring camera has not finished its sweep, and thus
waits while continously checking its queue until a message is received. This method

ensures that the trajectory of the cameras stays synchronized and robust to failures.

Histogram Back-Projection

Histogram Back-Projection is an image processing technique in which the degree
of similarity between two images can be quantified. From each image, a hue image
is generated, in which each pixel in the image is given a numerical value based on
its color. From this, computer vision techniques are used to compare the two images

and essentially calculate the probability that the two images are showing the same

41



feature.

For our experiments, we utilize histogram back-projection in the following way:
We start with an image of our robot intruder to use as a reference image. Then, for
each frame that a camera captures, we utilize histogram back-projection functions
in OpenCV in order to calculate the similarity of the frame with the reference image
(the image of the intruder). If the similarity score exceeds a given threshold, we
know that the current frame is showing an intruder and a flag is raised.

We remark that in a real scenario the user will not know what the intruder will
look like, and therefore a histrogram back-projection algorithm will not work. In
this case, more advanced computer vision algorithms for object detection must be
employed. However, since the focus of our problem is on the control aspects of this

problem, a simple histogram back-projection algorithm is sufficient.

5.2.2 Experimental Results

For our experiments we use a network of six AXIS 213 PTZ (Pan-Tilt-Zoom) network
cameras mounted along a square perimeter. In order to simulate a 1-dimensional
environment, we assign each camera responsibility for surveilling a segment of the
perimeter and assume that camera c; and camera cg have no left and right neighbors,
respectively. Movement of the cameras is restricted to a panning motion and is
controlled in such a way as to keep the center of the f.o.v. moving at constant speed.
Each camera is equipped with a low-level detection algorithm in order to alert the
user when an intruder enters its f.o.v.. All programming of the cameras is performed

in Python, utilizing the OpenCV computer vision package for image processing. A
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diagram of our camera network and a table with our experimental parameters are

shown in Fig. 7 and Table 1.

Table 1: Relevant experimental parameters.

Camera |  d;(cm) v (cm/s) 7; (s)
1 624.3 20.8 30.0
Ca 290.3 18.0 16.1
C3 291.0 20.6 14.1
Cy4 619.3 21.1 29.0
Cs 331.5 19.0 17.4
Co 232.7 17.3 13.5

In our first experiment, we validate our distributed coordination algorithm to
control the motion of the cameras. Fig. 8 shows the results of our experiment.
Notice that the algorithm steers the cameras into an equal waiting trajectory within

max as predicted by Theorem 3.2. In fact, since the cameras are all starting the

time 67
experiment at their left boundary, we see that the system reaches an equal waiting
trajectory in only slightly longer than 57™# = 150 s. This is consistent with Theorem
3.2, since delays in communication and network bandwidth limits cause some lagging
in our experimental implementation. In order to demonstrate the behavior of the
algorithm under a camera failure, camera c, is stopped at time ¢t = 600 s. Notice
that the algorithm continues to function despite this temporary hardware failure.

In our second experiment we focus on the worst-case detection time of intruders.

We utilize an Erratic mobile robot from Videre Design to simulate a smart intruder.
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Figure 8: Cameras trajectories as obtained from our experimental implementation of
Algorithm 2. See Table 1 for the cameras parameters. Notice that the trajectory is
robust to noise, as well as small overshoots and undershoots introduced by hardware
and network uncertainty. These inaccuracies in the individual camera trajectories
do not significantly affect coordination. The cameras trajectory is also robust to
momentary failures, as shown at time ¢ ~ 600 s.

The robot is equipped with an on-board computer with Ubuntu Linux and uses
Player/Stage in order to interface with the user and allow for manual steering. We
assume that the cameras motion is controlled by Algorithm 2, and we run 40 trials
where the Erratic robot enters the environment at specific times and locations (we
let the Erratic robot move only along the first segment, that is, the segment with
longest sweeping time), and it is manually driven to avoid detection for as long as
possible. We report the results of our second experiment in Fig. 11(a), where we
notice that the theoretical worst-case detection time is a relatively tight bound for

the experimental worst-case detection time.

In our third experiment we focus on the average detection time of intruders. As
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Figure 9: Screen shot of the GUI from our experiments, before an intruder has
entered the environment

Camera Position Plot
and Schematic

VE

WE
vi
VE_
VE

= Wi _RIGH

Detection Camera 4 Video Camera States
Window Feed

Figure 10: Screen shot of the GUI from our experiments, after an intruder has entered
the environment
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in our second experiment, we let the cameras motion be controlled by Algorithm
2, and we use an Erratic robot as an intruder. We run 40 trials where the Erratic
robot enters the environment at random times and locations, and it is manually
driven to avoid detection for as long as possible. We report the results of our second
experiment in Fig. 11(b), where we notice that the theoretical bounds in Theorem 3.1
are compatible with the experimental data (the slight difference is due to the fact
that the theoretical value is calculated by considering all possible intruder initial
locations and times).

We remark that there is a small amount of uncertainty in the execution of the
algorithm by the cameras, resulting in small overshoots and undershoots in the indi-
vidual camera trajectories. As we see from Fig. 8, these small gaps, which are to be
expected in practical applications, do not have a significant effect on the performance
of the algorithm. We conclude that our experimental results validate our theory, our

camera models, and our assumptions.
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Figure 11: In Fig. 11(a) we show the detection times for our second experiment, in
which smart intruders appear at worst case times and locations. The detection times
of this experiment are depicted by a solid blue line. Notice that the detection times
are smaller than the upper bound predicted in Section 2. In Fig. 11(b) we show
the detection times for each trial of our third experiment, in which smart intruders
appear at random times and locations. The detection times of this experiment are
depicted by a solid blue line. The solid black line corresponds to the average of the
experimental detection times. For the considered configuration of cameras, the lower
bound ADT™ in (5) (dashed green line), ADT(X®) asin (6) (dotted red line), and the
worst case upper bound (dashed light blue line), which is calculated by multiplying
the lower bound on ADT* by the quantity Tt —

Q7 min

from (7) are reported.
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6 An Algorithm for Camera Reconfiguration

In this section we describe an algorithm to reconfigure the cameras patrolling win-
dows to improve the detection performance, and to allow the camera network to
recover from a permanent camera failure and autonomously adapt to the addition
and removal of cameras. We consider a symmetric gossip communication protocol
among cameras, where communication is allowed only among neighboring cameras,
and where each camera updates its patrolling window only after communication
with a neighboring camera. Our reconfiguration algorithm (REC) is described in
Algorithm 3, where D; represents cameras visibility constraints (A; C D).

An informal description of Algorithm 3 follows.

(Cameras reconfiguration) Camera ¢; sweeps back and forth at maximum speed its
patrolling windows A; (line 1), and it updates A; upon communication with neigh-
boring cameras (lines 2 to 5). The update of A; is performed so that, as time
progresses, the cameras patrolling windows form a partition of the boundary that
minimizes the longest sweeping time (line 5). Following Algorithm 2, cameras stop
for a certain waiting time when their f.0.v. reaches an extreme of their patrolling
window. These waiting times ensure that (i) communication among neighboring cam-
eras is maintained over time, and (ii) cameras trajectories are synchronized along an
Equal-waiting trajectory. As previously mentioned, in an Equal-waiting trajectory
the waiting times at the two extremes of the patrolling window are equally long.
Finally, in order to achieve motion synchronization, the (time varying) maximum

max

sweeping time 7% is propagated across cameras during the execution of the algo-

rithm. In order to do so, the auxiliary variable ¢; is used by the i-th camera to store
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Algorithm 3: Cameras Reconfiguration (Camera c;)
Input A, = [l ni], Di = [1,,7], o™

3

Require :{A4,...,A,} is a partition of T;

Set 7% =1, and ¢; = ¢;;
1 Move according to Algorithm 2;

if Communication between cameras ¢; and c¢;y1 then

2 Transmit ¢;, r;, 77"%, g; to cit1;
3 Receive ;1 1, riy1, 7255, giy1 from c;11;
4 Compute m = ({5 + riyqvmax) / (viax 4 pmax);
5 Update r; and ¢; 1, as:
m, if m e [17;+17 77,])
ri =lip1=47%, i m>%,
Vit if m< Vg1
6 Compute new value for 7, = (r; — ;) /v,
7 case ¢q; > ¢;
8 if gi+1 > Cit1 then
9 T = 78 — max{T;, Tip1, T}
10 ¢ = qiy1 = arg  max {7, Tit1, T b
L CirCit1,9i+1
11 else if ¢;11 < c¢;41 then
12 T = 78 = max{7;, Tit1};
13 ¢i = Gi+1 = arg max {7;, Tit1};
L CiyCit1
14 case q; < ¢;
15 if qi+1 § Cit+1 then
16 TN = T8 = max{T;, Tip1, T}
17 ¢ = qiy1 = arg max {7, Tit1, 70 )
L Ci)Ci+1,9i
18 else if ¢;11 > ¢;41 then
19 TN = 7 = max{7y, 71, T, T
20 G = ¢ir1 = arg max {7, Tip1, T T b
L CiyCit+1,9i,9i+1
the information about the camera associated with 7 (lines 7 to 20). 0J

For the analysis of Algorithm 3, notice that the patrolling window A; is updated
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every time camera ¢; communicates with a neighboring camera. Let A;(k) denote
the i-th patrolling window after £ communications of camera ¢;, and let d;(k) be the
length of A;(k). We say that a cameras trajectory X is asymptotically T-periodic if

there exists a duration 7' € R.( satisfying
lim X(t+7T)— X(t) =0.
t—o0

Theorem 6.1. (Convergence of REC) Consider a set of n cameras installed along
a one-dimensional open path I". Let Ay, ..., A, be the initial patrolling windows, with

A; € D; foralli e {1,...,n}. Let the cameras implement the Algorithm 3. Then,

1. for all iterations k € N and for all i € {1,...,n} the patrolling window A;(k)
satisfies A;(k) C D,

2. for all iterations k € N the set {A1(k), ..., An(k)} is a partition of ', and

L dilk) d,
7" = lim max = min max ,
k—ooi€{l,...,n} V" P ie{l,..,n} v

where P is the set of partitions {Ay,..., A} of T satisfying A; C D; for all

i€ {l,...,n} and d; is the length of A;, and

3. the cameras trajectory generated by the REC algorithm is asymptotically 27 -

periodic, and it converges to an Equal-waiting trajectory.

Proof. In the interest of space, we only sketch the proof. First, notice that the update
of r; and ¢; is such that A; belongs to the constraint set D;, so that statement (i)

follows. Second notice that cameras persistently communicate over time. Indeed,
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(i) each camera sweeps back and forth its assigned segment, (ii) cameras wait at
their boundaries until communication with a neighboring camera takes place, and
(iii) cameras 1 and n do not stop at ¢; and r,, respectively. In particular, it can be
shown that any two neighboring cameras communicate within an interval of finite
length. Then, statement (ii) follows from [32, Theorem IV.1]. Third, because of the
persistence of communication among cameras, the value 7™%*(k), which is decreasing
in k, propagates in some time Ty, t0 every camera, for every iteration k. Let ¢ be
such that 70 (t) = 7* + ¢, for some ¢ € R.(. Then, after time ¢ + T},0p, the period
T; of ¢; is within 2¢ of 27, for all « € {1,...,n}. Statement (iii) follows by letting ¢

tend to zero. ]

As stated in Theorem 6.1, Algorithm 3 drives the cameras towards an Equal-
waiting trajectory. Then, the detection performance of the cameras trajectory gen-
erated by our reconfiguration algorithm are as in Theorem 3.1 with 7M = 7.

We now validate our reconfiguration algorithm via simulation. We consider two
scenarios with 5 cameras. All cameras start their trajectory from some initial point
in their patrolling window. In the first scenario (Fig. 12) cameras have the same

max — (.67 m/s, and they are not subject to patrolling windows

maximum speed v
constraints. Relevant parameters for this simulation study are reported in Table 2.
Observe from Fig. 12 that the cameras trajectory converges to an Equal-waiting

max

trajectory, and that the length of the largest patrolling window 7™ is decreasing
and converges to 7" = 6.2023 s.
In the second scenario, cameras have different maximum speeds (v; = 0.61, vy =

0.57, v3 = 047, vy = 0.68, v5 = 0.68 m/s), and they are subject to patrolling
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Figure 12: Simulation of REC with n = 5 cameras with maximum speed v
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0.67 m/s and patrolling windows constraints. In Fig. 12(a) we show the cameras
trajectories starting from random positions. The dashed lines refer to the trajectories
of the active boundaries. In Fig. 12(b) we report the dynamics of the longest
patrolling time 7/"**. Notice that 7/"** converges to the optimal value 7" = 6.2023 s
(dash-dot line).

Table 2: Parameters and results for uniform cameras speed.

C1 C2 C3 Cq Cs

D;
A;(0)

04.68) [1.147.45 [3.3212.09]  [7.2618.41]  [10.12 20]
0291] [2915.38  [5.389.67]  [9.6714.26]  [14.26 20]
03.72] [3.727.45] [74511.63] [11.6315.82] [15.8220]

windows constraints. Relevant parameters for this simulation study are reported in

Table 3. As shown in Fig. 13, the cameras trajectory converges to an Equal-waiting

trajectory, and that the length of the largest patrolling window 7% is decreasing

and converges to 7 = 6.65 s.
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Figure 13: Simulation of REC with n = 5 cameras with non-uniform maximum
speeds v ~ U/ [0.45,0.75] m/s and no patrolling windows constraints. In Fig.
13(a) we show the cameras trajectories starting from random positions. The dashed
lines refer to the trajectories of the active boundaries. In Fig. 13(b) we report the
dynamics of 7/"**. Notice that 7,"** converges to the optimal value 7* = 6.65 s

(dash-dot line).

Table 3: Parameters and results for non-uniform cameras speed.

D; [0 20] [0 20] [0 20] [0 20] [0 20]
A;(0) [0 4] [4 8] 8 12] [12 16] [16 20]
Ai(o0) | [04.04] [4.047.81] [7.8110.94] [10.9415.48]  [15.48 20]
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7 Conclusions and Future Work

This work studies the problem of coordinating a team of autonomous cameras along
a one-dimensional open path to detect moving intruders. We propose mathematical
models of cameras and intruders, and we define the worst-case and average detection
times as performance criteria. We propose cameras trajectories with performance
guarantees, and distributed algorithms to coordinate the motion of the cameras.
Finally, we validate our theoretical findings and show effectiveness of our algorithms
via simulations and experiments.

Several extensions to this work are of interest. First, we envision extension to
more general situations, such as tree-like and cyclic environments. Second, addi-
tional performance metrics can be defined to compare different strategies, capturing
robustness of the coordination algorithm and predictability of the surveillance strat-
egy. Third, the possibility of having cameras f.o0.v.s with different and non-constant
velocity profiles. Finally, the problem of jointly estimating the cameras positions
and developing a sweeping strategy to prevent intruders from entering and exiting
the environment at strategic locations identified by suitable probability density func-

tions.
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8 Appendix: Working Code

In this section, we provide the python code used to conduct the experiments on our

hardware.

#Import Packages

import threading
import Queue

import urllib2
import numpy

import math

from math import pi
import time

import curses
import curses.ascii
import pdb

import pylab

import cv

import sys

#Defining Object Classes
HIST_BINS = 16

class Enum(object):
def __init__(self, names):
self._names = names
for index, name in enumerate(names):

setattr(self, name, index)

def name(self, value):
return self._names[value]

states = Enum([’WAIT_LEFT’, °WAIT_RIGHT’,
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’MOVE_LEFT’, °MOVE_RIGHT’,
»STALL’])

messages = Enum([’LEFT_READY’, ’RIGHT_READY’,
’>STALL’>, ’RESUME’])

def HuelImage(frame):
frame_hsv = cv.CreateImage((frame.width, frame.height), 8, 3)
cv.CvtColor (frame, frame_hsv, cv.CV_BGR2HSV)
frame_hue = cv.CreateImage((frame.width, frame.height), 8, 1)
cv.Split(frame_hsv, frame_hue, None, None, None)
return frame_hue

#Defining Camera Object Class

class Camera(object):
def __init__(self, number, d, al, a2, d_max, urll, url2,
url3, time_initial,speedl,height,correction_factor, hist):
self._1_neighbor = None
self._r_neighbor = None
self .history = []
self .timehistory = []
self.teardown = False
self._number = number

self._d=d
self._al=al
self._a2=a2

self._d_max=d_max
self._urlil=urli

self._url2=url2

self._url3=url3
self._time_initial=time_initial
self._timewait = O

self._speedl = speedl
self._height = height
self._correction_factor=correction_factor
self._flag=1

self._last=0
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self._resume=None
self._hist=hist

self._state states .WAIT_LEFT
self._queue = Queue.Queue()
self._1_ready = False
self._r_ready = False

#Image Processing Commands

def _Huelmage (self,frame):
frame_hsv = cv.CreateImage((frame.width, frame.height), 8, 3)
cv.CvtColor (frame, frame_hsv, cv.CV_BGR2HSV)
frame_hue = cv.CreateImage((frame.width, frame.height), 8, 1)
cv.Split(frame_hsv, frame_hue, None, None, None)
return frame_hue

#Defining Neighbors
def setNeighbors(self, 1l_neighbor, r_neighbor):

self._l_neighbor = 1_neighbor
self._r_neighbor = r_neighbor

#Updating States

def _handleMessage(self, message):
if message == messages.LEFT_READY:
self._1_ready = True
self._timewait = time.time()-self._time_initial
elif message == messages.RIGHT_READY:
self._r_ready = True
self._timewait = time.time()-self._time_initial
elif message == messages.STALL:
self._resume = self._state
self._state = states.STALL
elif message == messages.RESUME:
self._state = self._resume
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#Position Query

def _findPosition(self):
pos=urllib2.urlopen(self._url2)
for line in pos:
name,value=line.strip().split(’=")
if name==’pan’:
position=float(value)
return position

#Time Query

def _findTime(self):
t=time.time()-self._time_initial
return t

#State Query

def state(self):
return self._state

#Movement Commands
def _move(self, position, direction):

speedl = 180*(self._speedl/(self._height
*math.pow (numpy.tan(pi*position/180),2)+self._height))/pi

if self._number==0 or self._number==3:
if (position<=self._al and direction==states.MOVE_LEFT)
or (position>=self._a2 and direction==states.MOVE_RIGHT):
urllib2.urlopen(self._urll % 0)
return True
else:
1f direction==states.MOVE_RIGHT:
urllib2.urlopen(self._urll % speedl)
return False
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if direction==states.MOVE_LEFT:
urllib2.urlopen(self._urll % -speedl)
return False

if self._number!=0 and self._number!=3:
if (position>=self._al and direction==states.MOVE_LEFT)
or (position<=gself._a2 and direction==states.MOVE_RIGHT):
urllib2.urlopen(self._urll % 0)
print time.time()-self._time_initial
return True
else:
1f direction==states.MOVE_RIGHT:
urllib2.urlopen(self._urll % -speedl)
return False

if direction==states.MOVE_LEFT:
urllib2.urlopen(self._urll % speedl)
return False

#Commands for Collecting Initial Data

def initialData(self):

position = self._findPosition()

t = self._findTime ()

if self._number==0 or self._number==3:
self .history.append (numpy.tan(pi*position/180)
*self . _height+self._correction_factor)

else:
self .history.append(-1*numpy.tan(pi*position/180)
*self . _height+self._correction_factor)

self .timehistory.append(t)

#Last Position Query

def lastPos(self):
return self._last
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#Defining Stall Commands for Simulating Failures

def toggleStall(self):
if self._state==states.STALL:
self._queue.put(messages.RESUME)
else:
self._queue.put(messages.STALL)

#Defining the Tick commands, This will be looped on each camera.
def _tick(self):
#Image Processing

capture = cv.CreateFileCapture(self._url3)

frame = cv.QueryFrame(capture)

frame_hue = self._HueImage(frame)

back_project=cv.CreateMat (frame_hue.height,

frame_hue.width,cv.CV_8UC1)

cv.CalcBackProject ([frame_huel] ,back_project,self._hist)

cv.Threshold(back_project,back_project,

70,255,cv.CV_THRESH_BINARY)

contours = cv.CreateMemStorage(0)

seq = cv.FindContours(back_project,contours)

A=[]

A.append(cv.ContourArea(seq))

while seq!=None:
A.append(cv.ContourArea(seq))
seg=seq.h_next ()

n=numpy .max (4)

threshhold=[10000, 10000, 10000, 10000, 10000, 10000]
if n>=threshhold[self._number]:

t=time.time()-self._time_initial

cv.NamedWindow ("frame%f"%t,cv.CV_WINDOW_AUTOSIZE)
cv.ShowImage ("frame’f"%t ,frame)

cv.WaitKey(100)
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# Empty message queue

while True:
try:
message = self._queue.get_nowait()
except Queue.Empty:
break
self._handleMessage (message)

# Check position and time

position = self._findPosition()
self._last=position

t = self._findTime()

if self._number==0 or self._number==3:

self .history.append (numpy.tan(pi*position/180)
*self . _height+self._correction_factor)

else:
self .history.append(-1*numpy.tan(pi*position/180)
*self . _height+self._correction_factor)

self .timehistory.append(t)

# Handle states
if self._state == states.WAIT_LEFT:
if self._l_ready and self._flag==1:
self._timewait=time.time()-self._time_initial
self._flag=0
if self._1_ready and (t-self._timewait)>=(self._d_max-self._d):
self._state = states.MOVE_RIGHT
if self._l_neighbor:
self._l_ready = False
elif self._state == states.WAIT_RIGHT:
if self._r_ready and self._flag==0:
self._timewait=time.time()-self._time_initial
self._flag=1
if self._r_ready and (t-self._timewait)>=(self._d_max-self._d):
self._state = states.MOVE_LEFT
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if self._r_neighbor:
self._r_ready = False
elif self._state == states.MOVE_LEFT
or self._state == states.MOVE_RIGHT:
complete = self._move(position, self._state)
if complete:
if self._state == states.MOVE_LEFT:
self._state = states.WAIT_LEFT
if self._l_neighbor:
self._1_neighbor._queue.put(messages.RIGHT_READY)

else:
self._state = states.WAIT_RIGHT

if self._r_neighbor:
self._r_neighbor._queue.put (messages.LEFT_READY)

elif self._state == states.STALL:
urllib2.urlopen(self._urll % 0)

def _loop(self):
while not self.teardown:
self._tick()
#Multi-threading commands
def start(self):
p = threading.Thread(target=self._loop)
p.start()
def main(stdscr):

#Defining Variables

speed=[8.8,7.1,8.1,9.0,7.5,6.8]
height=[110.5, 112.0, 113.0, 114.0, 112.0, 112.0]

d=[245.8,114.3,114.6,243.4,130.5,91.5]
d_new=[]

for index, i in enumerate(d):
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d_new.append(i/speed[index])

d_max=numpy .max (d_new)
print (d_max)

correction_factor = [142.5, 315.8, 407.4, 605.4, 787.5, 874.4]

for i in range(len(d)):
d[il=d[i]/speed[i]

al=[-50.2,27.5,14,-43.3,26,7]
a2=[34,-13.7,-22.5,37.2,-23,-26.3]
tilt=[-3,-3,-2,-3, -3, -3l

s=[50.0,50.0,50.0,50.0,50.0,50.0]

time_initial=time.time()
capture = cv.CreateFileCapture(sys.argv[1])

# Get initial box
frame = cv.QueryFrame(capture)

# Calculate histogram for reference image

frame_hue = HueImage (frame)

hist=cv.CreateHist ([HIST_BINS], cv.CV_HIST_ARRAY, [(0, 180)]1, 1)
cv.CalcHist ([frame_hue], hist)

cv.NormalizeHist (hist, 255)

#Define a Camera Object for each Camera with relevant parameters

cameras = []

cameras.append(Camera(0, d[0], a1[0], a2[0], d_max,
’http://192.168.1.21/axis-cgi/com/ptz.cgi?continuouspantiltmove=%d,0’,
‘http://192.168.1.21/axis-cgi/com/ptz.cgi?query=position’,
*http://192.168.1.21/jpg/image. jpg’,
time_initial,s[0],height[0],correction_factor[0], hist))
cameras.append(Camera(l, d[1], a1[1], a2[1], d_max,
*http://192.168.1.23/axis-cgi/com/ptz.cgi?continuouspantiltmove=%d,0’,
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*http://192.168.1.23/axis-cgi/com/ptz.cgi?query=position’,
’http://192.168.1.23/jpg/image. jpg’,
time_initial,s[1],height[1],correction_factor[1], hist))
cameras.append (Camera(2, d[2], al[2], a2[2], d_max,
*http://192.168.1.22/axis-cgi/com/ptz.cgi?continuouspantiltmove=yd,0’,
*http://192.168.1.22/axis-cgi/com/ptz.cgi?query=position’,
’http://192.168.1.22/jpg/image. jpg’,
time_initial,s[2],height[2],correction_factor[2], hist))
cameras.append(Camera(3, d[3], a1[3], a2[3], d_max,
*http://192.168.1.26/axis-cgi/com/ptz.cgi?continuouspantiltmove=yd,0’,
*http://192.168.1.26/axis-cgi/com/ptz.cgi?query=position’,
’http://192.168.1.26/jpg/image. jpg’,
time_initial,s[3],height[2],correction_factor[3], hist))
cameras.append (Camera(4, d[4], al[4], a2[4], d_max,
*http://192.168.1.24/axis-cgi/com/ptz.cgi?continuouspantiltmove=7d,0’,
*http://192.168.1.24/axis-cgi/com/ptz.cgi?query=position’,
’http://192.168.1.24/jpg/image. jpg’,
time_initial,s[4],height[4],correction_factor[4], hist))
cameras.append(Camera(5, d[5], al[5], a2[5], d_max,
*http://192.168.1.25/axis-cgi/com/ptz.cgi?continuouspantiltmove=7d,0’,
*http://192.168.1.25/axis-cgi/com/ptz.cgi?query=position’,
’http://192.168.1.25/jpg/image. jpg’,
time_initial,s[5],height[5],correction_factor[5], hist))

cameras[0] .setNeighbors (None, cameras[1])
cameras[1] .setNeighbors(cameras[0],cameras[2])
cameras[2] .setNeighbors (cameras[1],cameras[3])
cameras[3] .setNeighbors(cameras[2],cameras[4])
cameras[4] .setNeighbors (cameras[3],cameras[5])
cameras[5] .setNeighbors (cameras[4],None)

cameras[0]._1_ready=True
cameras[5]._r_ready=True

for camera in cameras:

if camera._1_neighbor:
camera._1l_neighbor._queue.put (messages.RIGHT_READY)
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#Initialize Camera Position

urllib2.urlopen(’http
7pan=%d’%-52.2)

urllib2.urlopen(’http:

?pan=%d’%32)

urllib2.urlopen(’http:

?pan=%d’%22.7)

urllib2.urlopen(’http:

?pan=Y%d’%-48.9)

urllib2.urlopen(’http:

?pan=%d’%31.8)

urllib2.urlopen(’http:

?pan=%d’%13.1)

urllib2.urlopen(’http:

7tilt=%d’%tilt [0])

urllib2.urlopen(’http:

7tilt=%d’%tilt [1])

urllib2.urlopen(’http:

7tilt=Yd’%tilt[2])

urllib2.urlopen(’http:

7tilt=%d’%tilt [3])

urllib2.urlopen(’http:

7tilt=%d’%tilt [4])

urllib2.urlopen(’http:

7tilt=%d’%tilt [5])

urllib2.urlopen(’http:

?zoom=6000")

urllib2.urlopen(’http:

?7zoom=6000")

urllib2.urlopen(’http:

?zoom=60007)

urllib2.urlopen(’http:

?zoom=6000")

urllib2.urlopen(’http:

?7zoom=5900")

://192.
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urllib2.urlopen(’http://192.168.1.25/axis-cgi/com/ptz.cgi
?z0om=6000")

while time.time()-time_initial<=3:
for camera in cameras:
camera.initialData()

#Start Each Thread

for camera in cameras:
camera.start()

#Listen for stall or teardown command

curses.halfdelay(10)

teardown=False

while not teardown:

for index, camera in enumerate(cameras):

state = states.name(camera.state())
last_pos = camera.lastPos()
d_max = camera._d
stdscr.addstr(index, 0, ’Camera %d: %s %f %f’ %
(index, state, last_pos,d_max))

c = stdscr.getch()
if ¢c>= 0:
if ¢ == ord(°x?):
teardown = True
for camera in cameras:
camera.teardown = True
elif ¢ == ord(°t’):
print time.time()-time_initial
elif curses.ascii.isdigit(c):
index = int(c¢)-ord(’0?)
if index < len(cameras):
cameras [index] .toggleStall()
T=[]
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History=[]

for camera in cameras:
T.append (numpy .array(camera.timehistory))
History.append(numpy.array(camera.history))

#Plot results

History[:]=[history*2.54 for history in Historyl]
pylab.ion()
pylab.hold(True)
for index, camera in enumerate(cameras):
pylab.plot(T[index] ,History[index])

pylab.xlabel(’time (s)’)
pylab.ylabel(’position of f.o.v. (cm)’)
pylab.axis([0,1000,0,2500])
pylab.savefig(’fig.eps’)

if __name__ == ’__main__’:

curses.wrapper(main)
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