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Asynchronous and Dynamic Coverage Control
Scheme for Persistent Surveillance Missions

Jeffrey R. Peters, Sean Wang, Amit Surana, and Francesco Bullo

Abstract—A decomposition-based coverage control scheme is
proposed for multi-agent, persistent surveillance missions operat-
ing in a communication-constrained, dynamic environment. The
proposed approach decouples high-level task assignment from
low-level motion planning in a modular framework. Coverage as-
signments and surveillance parameters are managed by a central
base station, and transmitted to mobile agents via unplanned and
asynchronous exchanges. Coverage updates promote load balanc-
ing, while maintaining geometric and temporal characteristics
that allow effective pairing with generic path planners. Namely,
the proposed scheme guarantees that (i) coverage regions are
connected and collectively cover the environment, (ii) subregions
may only go uncovered for bounded periods of time, (iii) collisions
(or sensing overlaps) are inherently avoided, and (iv) under static
event likelihoods, the collective coverage regions converge to a
Pareto-optimal configuration. This management scheme is then
paired with a generic path planner satisfying loose assumptions.
The scheme is illustrated through simulated surveillance missions.

I. INTRODUCTION

A. Decomposition-Based Multi-Agent Surveillance

Modern exploratory and surveillance missions often utilize
autonomous vehicles or sensors to observe and monitor large
geographic areas. Example application domains include search
and rescue [14], environmental monitoring [32], warehouse
logistics [37], and military reconnaissance [7]. Such scenarios
require robust and flexible tools for autonomous coordination.

A number of planning strategies have been studied for single
agents, ranging from simple a priori tour construction [23]
to more complex methods involving Markov chains [34],
optimization [17], or Fourier analysis [16]. Unfortunately, it is
not straightforward to generalize single-agent strategies for use
in multi-agent missions: Naive approaches where each agent
follows an independent policy can result in poor performance
and introduce collision risks, while sophisticated generaliza-
tions often require joint optimizations that are intractable for
even modestly sized problems. Scaling issues are sometimes
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Fig. 1. Difficulties arise when complete or pairwise updates are impossible.
With only single-region updates, two steps are required to move from the
left-most to the right-most configuration. In the top path, blue is updated first,
leaving an uncovered block at the intermediate step. In the bottom path, red
is updated first, leaving a block that belongs to both regions simultaneously.

alleviated through distributed control; however, such setups are
application specific and may require extensive efforts to pose
a mathematical problem that is suitable for use with formal
techniques [19]. In contrast, decomposition-based approaches,
which decouple the assignment and routing problem by first
dividing the workspace among agents, offer a straightforward,
modular framework to reasonably accomplish the desired
goals, despite sacrificing optimality in general.

Communication constraints can, however, make it difficult
to effectively divide a dynamic workspace in real time, while
still ensuring that the result is amenable for pairing with
single-agent motion planners. For example, many unmanned
missions require agents to transfer sensor data to a central
base station for analysis. With difficult terrain or hardware
limitations, these sporadic exchanges with the base station
may provide the only means of sharing real-time information
across agents. Applications that operate under this constraint
include underwater gliders that must surface to communicate
with a tower [28], data mules that periodically visit ground
robots [31], and supervisory missions where human operators
analyze data collected by unmanned vehicles [29]. Here,
updated mission information can only be relayed to one agent
at a time, rendering traditional dynamic partitioning schemes,
which rely on complete or pairwise coverage updates, impossi-
ble. As such, designers are forced to either allow for overlap in
coverage assignments, or sacrifice complete coverage (Fig. 1).

This work presents a decomposition-based surveillance
framework that operates under asynchronous one-to-base sta-
tion communication, a protocol in which data is transferred
solely via sporadic exchanges between a central base station
and autonomous agents [26]. The complete scheme consists
of two components: a dynamic partitioning component and
a single-agent routing component. The work herein focuses
primarily on developing the partitioning component, which,
in addition to dividing the workload among the agents, ma-
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nipulates local variables in order to allow for effective pairing
with single-agent route planners. This development naturally
leads to a complete multi-agent framework in which high-level
coverage is coordinated by the base station, while individual
trajectories are generated independently via on-board planners.

B. Related Literature

Research relating to multi-agent coverage control is vast.
Typical strategies involve optimization [27], auctions [10],
biological meta-heuristics [4], potential fields [30], or space
decomposition [20]. Of particular relevance are multi-agent
persistent surveillance (persistent monitoring) problems, in
which a mobile sensor team is tasked with continual surveil-
lance of a region of interest, requiring each subregion to be
visited multiple (or infinitely many) times with the goal of
minimizing a cost, e.g., the time between visits or the likeli-
hood of detecting stochastic events [19]. Persistent surveillance
is a generalization of patrolling, where closed tours are sought
for the purpose of protecting or supervising an environment.
Patrolling has been studied extensively, with most current
solutions being based on operations research algorithms, non-
learning multi-agent systems, and multi-agent learning [1]. Pa-
trolling formulations are often one-dimensional and solutions
usually reduce to “back and forth” motions that do not readily
extend to general scenarios (see, e.g. [24]).

The framework proposed herein is based on workspace
decomposition, and uses an allocation strategy to reduce the
multi-agent problem into a set of single-agent problems.
This approach is common in multi-agent systems due to its
simplicity and scalability [19]. For persistent surveillance of
planar regions, decomposition-based approaches consist of two
primary components: partitioning and single-agent routing.
The most common approaches to optimal partitioning are
based on Voronoi partitions [21]. Effective schemes exist for
constructing centroidal Voronoi, equitable, or other types of
optimal partitions under various communication, sensing, and
workload constraints [5], [6], [25]. These strategies usually re-
quire convex environments. More general workspaces are usu-
ally addressed by discretizing the environment and considering
the resulting graph, on which any number of graph partitioning
schemes can be used [9]. In robotic contexts, the discrete
partitioning problem is often considered under communication
constraints, e.g., pairwise gossip [8] or asynchronous one-to-
base station communication [26]. The proposed partitioning
scheme most closely mirrors [26]; however, our approach em-
ploys additional logic to ensure the resultant coverage regions
are amenable for use in decomposition-based surveillance.

Single-agent path planners for persistent surveillance
most commonly operate over discrete environments, i.e.,
graphs [13], [35], and solutions to classical problems, e.g., the
Traveling Salesperson Problem [11], may suffice. Stochasticity
can be introduced using tools such as Markov chains [34].
Persistent surveillance strategies for non-discrete regions (in
particular, open subsets of Euclidean space), are less common.
Here, strategies include the a priori construction of motion
routines [22], the adaptation of static coverage strategies [33],
the use of random fields [12], and spectral decomposition [16].

The modular framework herein does not require any particular
single-agent route planner, but rather can incorporate any
planner satisfying a mild assumption set (see Section V).

Despite the vast research on both topics individually, re-
markably few papers explicitly consider the implications of
combining geometric partitioning with continuous routing in
the context of multi-agent persistent surveillance. Research
that does exist is mostly preliminary, considering ideal com-
munication and employing simplistic methods. For example,
the authors of [2] employ a sweeping algorithm for partitioning
and guide vehicle motion via lawn-mower pattens. The authors
of [20] use rectangular partitions, while employing a reactive
routing policy which, in ideal cases, reduces to spiral search
patterns. The work in [18] uses slightly more sophisticated par-
titioning in tandem with lawn-mower motion trajectories. Also
relevant is [36], where partitions are based on the statistical
expectation of target presence; however, ideal communication
is assumed. Other works, e.g. [3], employ decomposition-
based structures, but focus on task-assignment with no detailed
treatment of the combined assignment/routing protocol.

C. Contributions

This work presents a decomposition-based, multi-agent cov-
erage control framework for persistent surveillance, which
requires only sporadic, unscheduled exchanges between agents
and a central base station. In particular, we focus on develop-
ing a sophisticated partitioning and coordination scheme that
is designed for pairing with generic single-agent trajectory
planners within a modular framework. Our setup encompasses
realistic constraints including restrictive communication, dy-
namic environments, and non-parametric event likelihoods.

Specifically, we develop a dynamic partitioning scheme
that assumes only asynchronous, one-to-base station commu-
nication. This algorithm governs region assignments, while
also introducing timing variables and manipulating the agents’
high-level surveillance parameters. We prove that our parti-
tioning strategy has properties that make it amenable for use
in a decomposition-based surveillance scheme: the produced
coverage regions collectively form a connected m-covering,
local likelihood functions have disjoint support, no subregion
remains uncovered indefinitely, coverage regions evolve at a
time-scale that allows for appropriate agent reactions, among
others. For static likelihoods under mild assumptions, we show
that the set of coverage regions and associated generators
converges to a Pareto optimal partition in finite time. We
combine our partitioning scheme with a generic single-agent
trajectory, and show that this combination guarantees collision
avoidance (no sensing overlap) when the trajectory planner
obeys natural restrictions. We illustrate our framework through
numerical examples.

For clarity and readability in what follows, we postpone all
Theorem proofs until the Appendix.

II. MISSION OBJECTIVES AND SOLUTION APPROACH

A team of m mobile agents, each equipped with an on-
board sensor, is tasked with endlessly monitoring a non-
trivial, planar, large region of interest. The primary goal of
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• Communication link is established
• Sensor data sent to base station.

• Base station calculates update
• Agent receives updated region/variables

• Agents follow continuous time 
surveillance within assigned regions.

• Once waiting period is up, agents can 
enter any part of their assigned region

• Agent waits a pre-specified time to enter 
newly assigned regions

• During waiting period, other agent 
communicates with base, vacates region 
it no-longer owns. 

Fig. 2. An example illustrating the proposed strategy. The dynamic partition-
ing component (executed by the base station) manages coverage regions and
introduces logic to prevent collisions, while the routing component (executed
onboard each agent) governs agent motion.

the mission is to collect sensor data about some key dynamic
event or characteristic, e.g., an intruder. Data collected by
the agents is periodically relayed to a central base station
for analysis. Agents must move within the region to obtain
complete sensory information. Ideally, the agent motion/data
collection strategy should be coordinated so that:

1) the workload is balanced across agents,
2) no subregion goes unobserved indefinitely,
3) agents never collide (have sensor overlap), and
4) the search is biased toward regions of greater interest.

To achieve these goals, we adopt a decomposition-based
approach in which each agent’s motion is restricted to lie
within a dynamically assigned coverage region.

The analysis herein focuses primarily on developing an
algorithmic framework for partitioning that defines, maintains,
and updates the agents’ coverage assignments in a manner that
can be effectively paired with a typical single-agent route plan-
ner. More specifically, we seek a scheme to assign coverage
responsibilities, as well as provide high-level restrictions on
agent motion, so that lower-level, on-board trajectory planners
can operate independently within the proposed boundaries
to achieve global surveillance goals. In addition, we seek
algorithms that do not require peer-to-peer communication or
require the agents to be in constant contact with the base
station. As such, we assume only asynchronous, one-to-base
station communication (data transfer) [26], i.e., agents are
only assumed to sporadically communicate with a central base
station, subject to an upper bound on inter-communication
times, which are not specified a priori.

Broadly, our proposed solution operates as follows (see
Fig. 2). During each exchange with an agent, the base-
station calculates the new coverage region solely for the
communicating agent, and transmits the update. Updates are
performed so as to guarantee connected coverage regions,

and, in the limit for static likelihoods, distribute the coverage
load among the agents. During the exchange, the base station
also updates timing variables and governs the local likelihood
functions maintained by each agent so that, if no agent were
ever located outside of the support of its local likelihood at
any time, then the agents (sensors) would never be colocated.
Timing considerations also guarantee that 1) no region remains
uncovered, i.e., outside of the allowable area to which the
agents can travel, for an unbounded amount of time, and 2)
ample time is allotted for agents to vacate regions that are re-
assigned before the newly assigned agent takes over. Once the
update is complete, the link with the base is terminated and
the agent follows the trajectory found via its onboard planner.

III. PROBLEM SETUP

The base station, as well as each agent, has its own local
processor. “Global” information is stored by the base station,
while each agent only stores information pertinent to itself.

Convention 1. The subscripts i, j, or ` denote an entity
relevant to agent i, j, or `, resp. When attached to a set, the
subscripts i, j, ` indicate the component relevant to agent i, j
or `, resp. The superscript ‘A’ indicates an entity that is stored
on the agent’s local processor.

A summary of the variables stored by relevant entities is
shown in Table I. We expand on these, and define other
relevant mathematical constructs here.

A. Agent Dynamics

Each agent (sensor) i is modeled as a point mass that moves
with maximum possible speed si > 0. Define s := {si}mi=1.

B. Communication Protocol

There is a central base station with which the agents
communicate. We assume the following:

1) each agent can identify itself to the base station and
transmit sensor data,

2) there is a lower bound ∆ > 0 on the time between any
two successive exchanges involving the base station, and

3) there is an upper bound ∆ > 0 on the time between any
single agent’s successive exchanges with the base.

Note that 2) implies that no two agents can communicate with
the base station simultaneously1. These communication spec-
ifications collectively define the one-to-base station protocol.

C. Surveillance Region

Consider the surveillance region as a finite grid of disjoint,
non-empty, simply-connected subregions. We represent the
environment as a weighted graph G(Q) := (Q, E), where Q
is the set of vertices (each representative of a unique grid
element), and E is the edge set comprised of undirected,
weighted edges {k1, k2} spanning vertices representing adja-
cent regions2. The weight assigned to {k1, k2} is the distance

1This constraint also prevents zeno behavior in the communication times
2Travel between the regions without entering other subregions is possible



4

between the appropriate regions. We assume without loss
of generality that Q ⊂ N. Environmental information, e.g.,
terrain, is largely unknown at the mission onset; however, the
location of obstacles and prohibited areas, is known a priori
and is not included in the graphical representation G(Q).

Consider Q′ ⊆ Q. A vertex k1 ∈ Q is adjacent to Q′

if k1 /∈ Q′ and there exists {k1, k2} ∈ E with k2 ∈ Q′.
Define G(Q′) := (Q′, E ′), where E ′ := {{k1, k2} ∈ E|k1, k2 ∈
Q′}. A path on G(Q′) between k1, kn ∈ Q′ is a sequence
(k1, k2, . . . , kn), where k1, k2, . . . , kn ∈ Q′ and {kr, kr+1} ∈
E ′ for r ∈ {1, . . . , n − 1}. We say Q′ is connected if a path
exists in G(Q′) between any k1, k2 ∈ Q′. Let dQ′ : Q′×Q′ →
R≥0∪{∞} be the standard distance on G(Q′), i.e., the length
of a shortest weighted path in G(Q′) (if none exists, dQ′ takes
value ∞). Notice dQ′(k1, k2) ≤ dQ(k1, k2) for any k1, k2 ∈
Q′. Also let dQ′ denote the map dQ′ : Q′×2Q

′ → R≥0∪{∞},
where dQ′(k,Q′′) is the length of a shortest weighted path in
G(Q′) between k and any vertex in Q′′.

D. Coverage Regions

An m-covering of Q is a family P = {Pi ⊆ Q}mi=1 satisfy-
ing 1)

⋃m
i=1 Pi = Q, and 2) Pi 6= ∅ for all i. Define Covm(Q)

as the set of all possible m-coverings of Q. An m-partition
of Q is an m-covering that also satisfies 3) Pi

⋂
Pj = ∅, if

i 6= j. An m-covering or m-partition P is connected if each
Pi is connected. In what follows, the base station maintains
an m-covering P of Q, and surveillance responsibilities are
assigned by pairing each agent i with Pi ∈ P (called agent
i’s coverage region). Each agent maintains a copy PA

i of Pi.
The base station also stores a set c := {ci ∈ Q}mi=1 (ci is the
generator of Pi), and each agent i maintains a copy cAi of ci.

E. Identifiers, Timers, and Auxiliary Variables

The proposed algorithms introduce logic and timing con-
siderations to ensure an effective overall framework. To each
k ∈ Q, assign an identifier IDk ∈ {1, . . . ,m}. Define
ID := {IDk}|Q|k=1, and let P ID := {P IDi }mi=1, where P IDi :=
{k ∈ Q | IDk = i}. Notice P ID is an m-partition of Q. For
each agent i, define a timer Ti having dynamics Ṫi = −1
if Ti 6= 0, and Ṫi = 0 otherwise. The set T := {Ti}mi=1

is maintained by the base station. Similarly, each agent i
maintains a local timing variable τAi . Even though τAi plays
a similar role to the timer Ti, note that τAi is constant unless
explicitly changed by the algorithm, while Ti has autonomous
dynamics. Next, the base station maintains a set ω := {ωi}mi=1,
where ωi is the time of agent i’s last exchange with the base
station. Each agent maintains a copy ωA

i of ωi. Finally, each
agent stores locally a subset PA,pd

i ⊆ PA
i which, loosely,

collects vertices that have recently been added to PA
i .

F. Likelihood Functions

A real-time estimate of the likelihood of events of interest
occurring within any subset of the surveillance region is
maintained by the base station in the form of a time-varying
probability mass function3 Φ : Q × R≥0 → R≥0. Since it is

3For any t, we have
∑

k∈Q Φ(k, t) = 1

TABLE I
STORAGE SUMMARY

Stored by Base Station

Variable Description

G(Q) Graphical representation of the environment
P m-covering of Q (P ∈ Covm(Q))
c Set of generators (c ∈ Qm)

ID Set of identifiers
(
ID ∈ {1, . . . ,m}|Q|

)
T Set of Timers

(
T (t) ∈ Rm

≥0

)
ω Set of most recent communication times

(
ω ∈ Rm

≥0

)
Φ Global likelihood function

(
Φ : Q× R≥0 → R≥0

)
Stored by Agent i

Variable Description

G(Q) Graphical representation of the environment
PA
i Coverage region

(
PA
i ⊂ Q

)
cAi Coverage region generator

(
cAi ∈ Q

)
P

A,pd
i Set of “recently added” vertices

(
P

A,pd
i ⊆ PA

i

)
τAi Local timing parameter

(
τAi ∈ R

)
ωA
i Agent i’s most recent communication time

(
ωA
i ∈ R≥0

)
ΦA

i Local likelihood function
(
ΦA

i : Q× R≥0 → R≥0

)

difficult to precisely define load-balancing requirements over
arbitrarily time-varying environments, our analysis focuses on
achieving optimal performance in the case of a static environ-
ment, i.e., when Φ is time-invariant. We then show through
simulation that our proposed strategy still can be effectively
employed in the case of a quasi-static environment, i.e., when
Φ(k, ·) is piecewise constant for any k. This situation arises in
many common scenarios, e.g., when estimates of Φ are only
updated during exchanges between the base station and the
mobile agents, which occur at discrete time-points.

Define each agent’s local likelihood ΦA
i : Q× R≥0 → R≥0

as the function that, loosely, represents the agent’s local belief
regarding events of interest occurring in Q. The partitioning
algorithm will manipulate the support of each ΦA

i to ensure
effective surveillance while also inherently preventing agent
collisions (sensor redundancy). Specifically, define

ΦA
i (k, t) =


Φ(k, t),

if k ∈ PA
i and(

t− ωA
i ≥ τAi or k /∈ PA,pd

i

)
,

0, otherwise.
(1)

In general, each function ΦA
i will be different4 from Φ.

Remark 1 (Global Data). If global knowledge of Φ is not
available instantaneously to agent i, ΦA

i can alternatively be
defined by replacing Φ(k, t) in (1) by Φ(k, ωA

i ). All subsequent
theorems hold under this alternative definition.

Remark 2 (Data Storage). The cost of storing a graph as
an adjacency list is O(|Q| + |E|). The generator set c, each
element of P , and the identifier set ID are stored as a integral

4Note that ΦA
i need not be normalized and thus may not be a time-varying

probability mass function in a strict sense
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vectors. The timer set T and the set ω are are stored as real
vectors. Typically, only the values of Φ at vertices in Q are
needed, so Φ is stored as a time-varying real vector. Thus, the
cost of storage at the base station is O(m|Q|+ |E|). Similarly,
each agent’s local storage cost is O(|Q|+ |E|).

IV. DYNAMIC COVERAGE UPDATE SCHEME

We adopt following convention for the remaining analysis.

Convention 2. Suppose that:
1) min ∅ := max ∅ := 0, and
2) when referring to a specific time instant, e.g., the instant

when an update is executed, the notation e+ and e−

refers to the value of the entity e immediately before
and after the instant in question, resp.

A. Additive Subset

We start with a definition.

Definition 1 (Additive Subset). Given k ∈ P IDi , the additive
subset P add

i (k) ⊆ Q is the largest connected subset satisfying:
1) P IDi j P add

i (k), and
2) for any h ∈ P add

i (k) ∩ Pj , where j 6= i:
a) Tj = 0, and
b) 1

si
dP add

i (k)(h, k) < 1
sj
dPj

(h, cj).

The following characterizes well-posedness of Definition 1.

Proposition 1 (Well-Posedness). If P IDi is connected and
disjoint from

⋃
j 6=i Pj , then P add

i (k) exists and is unique for
any k ∈ P IDi .

Proof. With the specified conditions, P IDi is connected and
satisfies conditions 1-3 in Definition 1. Thus, P add

i (k) is the
unique, maximally connected superset of P IDi satisfying the
same conditions.

Under the conditions of Proposition 1, if h ∈ P add
i (k), then

max{Tj |j 6= i, h ∈ Pj} = 0 and there is a path from k to h
in G(P add

i (k)) that is shorter than the optimal path spanning
cj and h within G(Pj), for any j 6= i with h ∈ Pj . Also note
that, by definition, additive subsets are connected.

B. Primary Update Algorithm

Define H : Qm × Covm(Q)× R≥0 → R≥0 ∪ {∞} by

H(c, P, t) =
∑
k∈Q

min

{
1

si
dPi

(k, ci)|k ∈ Pi

}
Φ(k, t),

where Φ is the global likelihood. If (i) each agent is solely
responsible for events within its own coverage region and (ii)
events occur proportionally to Φ, then H(c, P, t) is understood
as the expected time required for an appropriate agent to reach
a randomly occurring event from its region generator at time
t. Algorithm 1 defines the operations performed by the base
station when agent i communicates at time t0. Here, the input
∆H > 0 is a constant mission-specific parameter.

Consider the following initialization assumptions.

Algorithm 1: Timed One-To-Base Station Update

Data: t0, P , c, Φ, ω, ∆, ∆H, T , ID, s
Result: P , c, PA

i , cAi , PA,pd
i , T , τAi , ΦA

i , ω, ωA
i , ID

begin
1 Initialize P ∗ = P test = P , c∗ = ctest = c
2 Set P ∗i = P test

i = P IDi

if Ti > 0 and P ∗i = Pi then
3 Set τAi = τAi − t0 + ωi and ωA

i = ωi = t0
else

for k ∈ P IDi do
4 Set P test

i = P add
i (k) and ctest

i = k
if H(ctest, P test, t) < H(c∗, P ∗, t) then

5 Set P ∗ = P test, c∗ = ctest

6 Set PA,pd
i = P ∗i \P IDi

7 Call Alg. 2 and obtain output ΦA
i , ω, T, τ

A
i

8 Set Pi = PA
i = P ∗i , ci = cAi = c∗i , ωA

i = ωi

9 for k ∈ Pi do Set IDk = i

10 return P , c, PA
i , cAi , PA,pd

i , T , τAi , ΦA
i , ω, ωA

i , ID

Algorithm 2: Timer Update

Data: t0, P , P ∗, c∗, PA,pd
i , Φ, ω, ∆, ∆H, T , s

Result: ΦA
i , ω, T, τ

A
i

begin
1 ∆Bf

i := max
{

1
si
dPi(k, P

∗
i \P

A,pd
i )|k ∈ Pi\P ∗i

}
for Each j 6= i satisfying Pj ∩ P ∗i 6= ∅ do

2 ∆Bf
j := max

{
1
sj
dPj

(k, Pj\P ∗i )|k ∈ Pj ∩ P ∗i
}

3 Set Tj = ωj + ∆− t0
4 Find ∆Bf

max = max
j 6=i,Pj∩P∗i 6=∅

{ωj + ∆ + ∆Bf
j − t0}

5 Redefine ∆Bf
max = max{∆Bf

max,∆
Bf
i }

6 Set Ti = ∆Bf
max + ∆H, τAi = ∆Bf

max, ωi = t0
7 Construct ΦA

i , according to (1) with updated variables
8 return ΦA

i , ω, T, τ
A
i

Assumption 1 (Initialization). The following properties are
satisfied when t = 0:

1) P is a connected m-partition of Q,
2) P = PA = P ID, and
3) for all i ∈ {1, . . . ,m},

a) ci = cAi ∈ PA
i ,

b) PA,pd
i = ∅,

c) Ti = ωi = ωA
i = 0,

d) τAi = −∆H, and
e) ΦA

i (·, 0) is defined according to Eq. 1.

Notice 1) and 3a) together imply that ci 6= cj for any j 6= i.
Our first result guarantees that the use of Algorithm 1 for
coverage region updates is well-posed.

Theorem 1 (Well-Posedness). Under Assumption 1, an update
scheme in which, upon each exchange, the base station and
the communicating agent update their respective variables via
Algorithm 1 is well-posed. That is, the operations required by
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Algorithm 1 are well-posed at the time of execution.

Performing of updates with Algorithm 1 does not guarantee
that individual coverage regions (elements of P ), are disjoint
from one another. It does, however, guarantee that the m-
covering P , the local coverage region set PA := {PA

i }mi=1,
and the local likelihoods {ΦA

i }mi=1 retain properties that are
consistent with the goals of the decomposition-based coverage
framework. Namely, the coverings P and PA maintain connec-
tivity, and each function ΦA

i has support that is disjoint from
that of all other local likelihoods, yet still evolves to provide
reasonable global coverage. The manipulations in Algorithm 2
also ensure that agents are able to “safely” vacate areas that
are re-assigned before newly assigned agents enter. We detail
these and other properties for the remainder of this section.

C. Set Properties
The next result formalizes key set properties.

Theorem 2 (Set Properties). Suppose Assumption 1 holds,
and that, upon each exchange, the base station and the
communicating agent update their respective variables via
Algorithm 1. Then, the following5 hold at any time t ≥ 0:

1) P ID is a connected m-partition of Q,
2) P is a connected m-covering of Q,
3) ci ∈ Pi and ci 6= cj for any i 6= j,
4) supp(ΦA

i (·, t)) ⊆ Pi for any i, and
5)
⋂m

i=1 supp(ΦA
i (·, t)) = ∅

Whenever additions are made to an agent’s coverage region
during a call to Algorithm 1, the newly added vertices are
not immediately included in the instantaneous support6 of the
agent’s local likelihood. As such, if each agent’s movement is
restricted to lie within the aforementioned instantaneous sup-
port, then exploration of newly added regions is temporarily
prohibited following an update. This delay allows other agents
to vacate before the newly assigned agent enters. Conversely,
when regions are removed from an agent’s coverage region,
Algorithm 1 guarantees a “safe” path, i.e., a path with no
collision risk, exists and persists long enough for the agent to
vacate. Let d := maxi

1
si

∑
{k1,k2}∈E dQ(k1, k2), and define

the prohibited region of agent i at time t, Prohi(t), as the
subset consisting of any newly added vertices that do not yet
belong to supp(ΦA

i (·, t)), i.e., Prohi(t) := {k ∈ PA
i |, t−ωA

i <
τAi and k ∈ PA,pd

i }, we formalize this discussion as follows.

Theorem 3 (Coverage Quality). Suppose Assumption 1 holds,
and that, upon each exchange, the base station and the
communicating agent updates their respective variables via
Algorithm 1. Then, for any k ∈ Q and any t ≥ 0:

1) k belongs to at least one agent’s coverage region Pi,
2) if k ∈ Prohi(t) for some i, then there exists t0 satisfying

t < t0 < t+ ∆ + d such that, for all t̄ ∈ [t0, t0 + ∆H],
the vertex k belongs to the set Pi\Prohi(t̄), and

3) if k is removed from Pi at time t, then, for all

t̄ ∈
(
t, t+

1

si
dP−i

(
k, P ID,−

i

)]
,

5supp(f) denotes the support of a function f .
6The instantaneous support of ΦA

i at time t is defined as supp(ΦA
i (·, t)).

we have
a) P ID,−

i ⊆ Pi, and
b) there exists a length-minimizing path on G(P−i )

from k into P ID,−
i , and all of the vertices along

any such path (except the terminal vertex) belong
to the set ProhID+

k
(t̄)\

⋃
j 6=ID+

k
Pj .

Theorems 2 and 3 allow Algorithm 1 to operate within a
decomposition-based framework to provide reasonable cover-
age with inherent collision avoidance. Indeed, when each agent
moves within its coverage region and avoids its prohibited
region, the theorems imply that each agent 1) can visit its
entire coverage region (connectedness), 2) allows adequate
time for other agents to vacate newly assigned regions before
entering, and 3) has a “safe” route into the remaining coverage
region if its current location is removed during an update.

Remark 3 (Local Variables). Theorems 2 and 3 also hold if
we replace P with PA and c with cA in the theorem statement.

Remark 4 (Bounds). Theorem 3 also holds when d is re-
defined as any other upper bound on the subgraph distance
between two arbitrarily chosen vertices of an arbitrarily
chosen connected subgraph of G.

D. Convergence Properties
Our proposed strategy differs from that of [26] mainly due

to the presence of logic (e.g., timer manipulations) to ensure
effective pairing with single-agent trajectory planners. Note
also that H differs from typical partitioning costs, since it
uses subgraph, rather than global graph, distances. As such,
convergence properties of the algorithms herein do not follow
readily from existing results. Consider the following definition.

Definition 2 (Pareto Optimality). The pair (c, P ) is Pareto
optimal at time t if (i) H(c, P, t) ≤ H(c̄, P, t) for any c̄ ∈ Qm,
and (ii) H(c, P, t) ≤ H(c, P̄ , t) for any P̄ ∈ Covm(Q).

The following result characterizes the dynamic evolution of
coverage regions with respect to Pareto optimality.

Theorem 4 (Convergence). Suppose Assumption 1 holds
and that, upon each exchange, the base station and the
communicating agent updates their respective variables via
Algorithm 1. If Φ is static, i.e., Φ(·, t1) = Φ(·, t2) for all t1, t2,
then the m-covering P and the generators c converge in finite
time to an m-partition P ∗ of Q and a set c∗, resp. The pair
(c∗, P ∗) is Pareto optimal at any time following convergence.

Whenever the event likelihood is static (and Assumption 1
holds), Algorithm 1 causes coverage regions and generators to
collectively converge in finite time to a Pareto optimal config-
uration. That is, the agent’s limiting coverage assignments are
“optimal” in that they balance the coverage load in a manner
that directly considers the likelihood Φ. Further, the entire
operation only relies on sporadic and unplanned information
exchange between agents and the base station.

Remark 5 (Voronoi Partitions). It can be shown that Pareto
optimality of (c∗, P ∗) in Theorem 4 implies that, following
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convergence, P ∗ is a multiplicatively weighted Voronoi parti-
tion (generated by c∗, weighted by s, subject to density Φ(·, t))
by standard definitions (e.g., [26]). If the centroid set of each
Pi is defined as arg minh∈Pi

∑
k∈Pi

dPi
(k, h)Φ(k, t), then P ∗

is also centroidal.

V. DECOMPOSITION-BASED SURVEILLANCE.

This section pairs the proposed partitioning framework
with a generic, single-vehicle trajectory planner, forming the
complete, decomposition-based coverage control framework.

A. Complete Routing Algorithm

Theorems 2 and 3 provide a number of useful insights when
using the dynamic partitioning updates of the previous section.
Namely, Theorem 2 ensures that (i) the instantaneous support
of each ΦA

i lies entirely within the coverage region PA
i , and

(ii) the support of two distinct agents’ local likelihoods do not
intersect. Theorem 3 states that (i) length of any interval on
which a given vertex is uncovered, i.e., belongs solely to agent
prohibited regions, cannot exceed a finite upper bound, and (ii)
the parameter ∆H is a lower bound on the length of time that
a recently uncovered vertex must remain covered before it can
become uncovered again. Since G(Q) is a discrete represen-
tation of the surveillance region, these facts together suggest
that an intelligent routing scheme that carefully restricts agent
motion according to the instantaneous support of the local
likelihood functions could achieve adequate coverage while
also accomplishing the ancillary goal of collision avoidance.
This motivates the following assumption.

Assumption 2 (Agent Motion). Each agent i has knowledge of
its position at any time t, and its on-board trajectory planner
operates under the following guidelines:

1) generated trajectories obey agent motion constraints,
2) trajectories are constructed incrementally and can be

altered in real-time, and
3) the agent is never directed to leave regions associated

with Pi or enter regions associated with Prohi(t).
Each agent precisely traverses generated trajectories.

Algorithm 3 presents the local protocol for Agent i.

B. Collision Avoidance

Although Assumption 2 locally prevents agents from leav-
ing assigned coverage regions or entering prohibited regions,
dynamic coverage updates can still result in undesirable agent
configurations. Indeed, an agent can be placed outside of
its own coverage region if the vertex corresponding to its
location is abruptly removed during an update. If this happens,
Algorithm 3 constructs a route from the agent’s location back
into a region where there is no collision risk. With mild
assumptions, Theorem 3 guarantees that this construction 1) is
well-defined, and 2) does not present the agent with a transient
collision risk. We formalize this result here.

Theorem 5 (Collision Avoidance). Suppose Assumptions 1
and 2 hold, and that each agent’s initial position lies within its
initial coverage region Pi. Suppose further that each agent’s

Algorithm 3: Motion Protocol for Agent i

Data: G(Q), ΦA
i , PA

i , cAi , PA,pd
i , τAi , ωA

i

begin
while True do

1 Increment trajectory via on-board planner
2 Follow trajectory

if Communication with the base station then
3 Set P test

i = PA
i

4 Obtain updated variables from base station
if Location lies within the set PA

i \P test
i then

5 Find a minimum-length path in G(P test
i )

from the currently occupied node into PA
i

while Agent i is outside PA
i do

6 Follow the aforementioned route

motion is locally governed according to Algorithm 3, where
the update in line 4 is calculated by the base station via
Algorithm 1. If the weight assigned to each edge in G(Q)
is an upper bound on the distance between the associated
regions, then no two agents will ever collide.

By running the schemes of Section IV in conjunction with
a motion planning scheme obeying Assumption 2, we obtain
a complete strategy that 1) only requires weak communication
assumptions, 2) provides dynamic load-balancing, and 3) has
inherent collision avoidance/efficiency properties.

VI. NUMERICAL EXAMPLES

This section presents numerical examples to illustrate the
functionality of the decomposition-based routing scheme. In
all examples, high-level coverage assignment updates are
performed by the base station via Algorithm 1 during each
exchange with an agent, while each agent’s local processor
runs the motion protocol in Algorithm 3. For incremental
trajectory construction (Algorithm 3, line 1), we implement a
modified version of the Spectral Multiscale Coverage (SMC)
scheme in [15], which creates agent trajectories that mimic
ergodic dynamics while also locally constraining agent motion
to lie within the appropriate sets. This planner satisfies As-
sumption 2. Initial region generators were selected randomly
(enforcing the non-coincidence constraint), and each agent was
initially placed at its region generator. The initial covering P
was created from these generators by calculating a weighted
Voronoi partition. The remaining parameters were chosen
according to Assumption 1. During the simulation, randomly
chosen agents (chosen via random number generator) sporad-
ically communicated with the base station to receive coverage
assignment updates. Communication times were randomly
chosen, subject to a maximum inter-communication time ∆.

A. Static Likelihood

The first example is a 4 agent mission, which is executed
over a 100 x 100 surveillance region subject to a static,
Gaussian likelihood centered at the bottom left corner. For
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discretization, the region is divided into 400, 5 x 5 subregions,
and regions are considered adjacent if they share a horizontal
or vertical edge. Each agent has a maximum speed of 1 unit
distance per unit time, and the maximum inter-communication
time is ∆ = 10 time units. Figure 3 shows the evolution of
the coverage regions at various time points for an example
simulation run. Note that Figure 3 only shows each agent i’s
active coverage region, i.e., the subset of Pi that does not
intersect its prohibited region Prohi(t). The family of active
coverage regions does not generally form an m-covering of
Q; however, elements of this family are connected and never
intersect as a result of inherent collision avoidance properties.

t = 0 t = 50 t = 150

t = 250 t = 350 t = 10000

Fig. 3. Snapshots of a 4 agent surveillance mission, assuming a static
Gaussian likelihood. Each agent’s position, past trajectory, and active coverage
region are indicated by the colored triangle, line, and squares, resp..

The left plot in Figure 4 depicts the maximum amount
of time that any individual subregion went uncovered, i.e.
the subregion did not belong to any agent’s active covering
Pi\Prohi(t), during each of 50 simulation runs. Here, the
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Fig. 4. The maximum amount of time that any subregion went uncovered in
each of 50 simulation runs (left), and the value of the cost H as a function
of time, averaged over the same 50 runs (right).

maximum amount of time that any region went uncovered
was 186 units, though most trials had maximums of less than
75 units. This is well-below the loose bound ∆ + d = 770
predicted by Theorem 3 (see Remark 4). The right plot in
Figure 4 shows the mean values of the cost function H as
a function of time, calculated over the same 50 simulations
runs. Here, error bars represent the range of cost values
achieved at select time points. The variance between runs
is due to the stochastic nature of the data-exchange patterns
between the agents and the base station. Notice that the
cost is a non-increasing function of time, as predicted in
the proof of Theorem 4, eventually settling as the coverage

regions/generators reach their limiting configuration, e.g., see
Figure 3. These configurations are guaranteed to be Pareto
optimal and, by Remark 5, to form a multiplicatively weighted
Voronoi partition. Since vehicles are assumed to have identical
maximum speeds, we see from the limiting configuration in
Figure 3 that the resultant coverage assignments provide load-
balancing that takes into account the event likelihood. If the
low-level trajectory planner biases trajectories according to the
event likelihood, this results in desirable coverage properties.
Under the modified SMC planner used here, the temporal
distribution of agent locations closely resembles the spatial
likelihood distribution in the limit, as shown in Figure 5.

Fig. 5. Comparison between the (static) event likelihood Φ (left), and the
proportion of time that some agent occupied each subregion after significant
time has passed (10000 units) (right).

Further, during the simulation, no two agents ever occupied
the same space due to the careful parameter manipulations em-
ployed by Algorithm 1. Figure 6 illustrates the logic governing
these manipulations through a simplistic example. During the

Blue communicates 

with cloud
Red communicates, 

vacates region

Blue adds 

new regions

Fig. 6. Simplified example illustrating how Algorithm 1 manipulates timing
parameters to prevent agent collisions.

first update, the blue agent acquires some of the red agent’s
coverage region. Rather than immediately adding these regions
to its active covering, the blue region waits until sufficient
time has passed to guarantee that the red agent has updated
and moved out of the reassigned regions. Under Algorithm 3,
once the red agent communicates with the base, it immediately
vacates the re-assigned regions, after which the blue agent can
add the region to its active covering. This procedure guarantees
that no two agents will never have overlapping active coverings
and thus never collide (Theorem 5). This same logic is results
in inherent collision prevention over more complex scenarios.

B. Quasi-static Likelihood

We now illustrate how the proposed coverage framework
reacts to abrupt changes in the underlying likelihood, i.e.,
when the likelihood is quasi-static. This type of scenario is
common in realistic missions, e.g., when the base-station’s
estimate of the underlying likelihood is only re-formulated
if some agent’s sensor data indicates a drastic change in the
underlying landscape. For this purpose, we adopt identical
parameters as in the first example, with the exception of the
likelihood Φ, whose spatial distribution abruptly switches at
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select time-points. If the switches are sufficiently spaced in
comparison to the rate of convergence, then the coverage
regions dynamically adjust to an optimal configuration that
is reflective of the current state. For example, Figure 8 shows
the coverage region evolution after the underlying likelihood
undergoes a single switch from the initial to the final density
shown in Figure 7 at time t = 2000. In contrast, when

Initial Likelihood Final Likelihood

Fig. 7. The initial and final likelihood Φ(·, t).

t = 2000 t = 2100

t = 2200 t = 4000

Fig. 8. Coverage regions after the likelihood switches (see Fig. 7)

the underlying likelihood changes faster than the rate of
convergence, coverage regions are constantly in a transient
state. Despite this, the proposed framework still results in
some degree of load-balancing. To illustrate, Figure 9 shows
the value of the cost H during a simulation in which the
underlying likelihood switches at 12 randomly chosen time-
points over a 1000 unit horizon. Each switch re-defined the
spatial likelihood as a Gaussian distribution centered at a
randomly selected location. Notice that the value of the cost
function monotonically decreases between the abrupt spikes
caused by changes in the underlying likelihood. Despite the
fact that convergence is not reached, coverage regions quickly
shift away from high-cost configurations, as indicated by the
sharp decreases in the cost shortly following each switch.

VII. CONCLUSION

This work presents a modular, decomposition-based, cover-
age control framework for communication-constrained multi-
agent surveillance missions. In particular, our approach uses a
dynamic partitioning strategy to balance the surveillance load
across available agents, requiring only sporadic and unplanned
exchanges between individual agents and a base station. The
partitioning update algorithm also manages high-level timing
and logic parameters to guarantee that the resulting coverage
assignments have geometric and temporal properties that are
amenable for combination with generic single vehicle trajec-
tory planners. Under appropriate assumptions, the proposed
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Fig. 9. Evolution of the costH using a quasi-static likelihood with 12 random
switches (switch times are indicated by the stars).

algorithms will produce a set of coverage regions forming a
Pareto optimal partition, while also ensuring collision avoid-
ance and quality of coverage guarantees.

Future work should further relax communication assump-
tions to reflect additional realistic hardware limitations, e.g.,
use of directional antennae for wireless transmission. Other
areas of future research include the addition of peer-to-peer, in
addition to central, communication, performance comparisons
between specific trajectory planners when used within our
framework, e.g., those involving ergodic Markov chains, and
further theoretical characterizations of performance.

APPENDIX: PROOFS

Proposition 2 (Set Membership). Suppose Assumption 1
holds, and that, at the time of each exchange occurring prior
to the fixed time t̄ ≥ 0, required algorithmic constructions are
well-posed so that the base station and the communicating
agent are able to update their respective variables via Algo-
rithm 1. Then, for any k ∈ Q at any time t ≤ t̄:

1) k ∈ PIDk
,

2) k belongs to at most 2 elements of P ,
3) if TIDk

= 0, then k /∈ Pj for any j 6= IDk, and
4) if k ∈ Pj , j 6= IDk, then Pj ∩P ID` = ∅ for ` /∈ {j, IDk}

Proof. Fix t̄ ≥ 0, k ∈ Q. When t = 0, P = P ID is an
m-partition of Q, implying the proposition. Since k is not
removed from PIDk

or added to any Pi with i 6= IDk until
its first reassignment, i.e., when IDk is changed. Thus, the
proposition is true for all t prior to the first reassignment.
Suppose the proposition holds for all t prior to the pth

reassignment, which occurs at t = t0. Suppose that ID−k = j,
ID+

k = i 6= j. Algorithm 1 defines P ID,+
i = P+

i = P+

ID+
k

.

Thus, k ∈ P+

ID+
k

= P+
i and remains in these sets until another

reassignment. Statement 1 holds, therefore, for all t prior to the
p+ 1st reassignment. Now note that, by Alg. 2, reassignment
cannot occur at t0 unless T−j = 0. By inductive assumption,
statement 3 of the proposition holds when t = t−0 , implying
that k /∈ P−` for any ` 6= j. Upon reassignment, the timers
Tj , Ti are modified such that T+

j , T
+
i > ω+

j + ∆− t0. Since
1) IDk is unchanged as long as Tj > 0, and 2) agent j
communicates with the base prior to time ω+

j + ∆ (when k
is removed from Pj), we deduce that k solely belongs to Pj

and Pi until the p + 1st reassignment. By the same logic, at
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any time t ≥ t+0 at which Ti = 0 and the p+ 1st reassignment
has not yet occurred, k ∈ Pi exclusively (addition to other
sets in P without reassignment is impossible). We deduce
that statements 2 and 3 hold for any t prior to the p + 1st

reassignment. Now note that, 1) statement 3 holds prior at
time t+0 , implying P−j = P ID,−

i , 2) no agent claims additional
points vertices from P+

j unless Tj = 0, and 3) k cannot be
added to a coverage region without reassignment. As such,
Pj ∩ P ID` = ∅ for any ` /∈ {j, IDk = i} prior to the p + 1st

reassignment. From persistent communication and the bound
∆, the proposition follows by induction.

Proof of Theorem 1. It suffices to show that Def. 1 is well-
posed (Prop. 1) whenever additive sets are required. We
proceed by induction. When t = 0, P ID = P is a connected
m-partition of Q and thus, for any i, P IDi is disjoint from⋃

j 6=i Pj . The same holds prior to the first exchange between
the base station and some agent. Thus, by Prop. 1, the first
call to Alg. 1 is well-posed. Now assume that, for all times
t prior to the pth call to Alg. 1, 1) P ID is a connected m-
partition of Q, and 2) if an exchange that requires construction
of P add

i occurs, then P IDi ∩
(⋃

j 6=i Pj

)
= ∅. This implies that

Prop. 2 holds at any time t prior to the p + 1st exchange.
Assume the pth communication occurs when t = t0 and
involves agent i. By the uniqueness of identifiers, P ID,+ is
an m-partition of Q. To show that P ID,+ is connected, first
note that P ID,+

i = P+
i . Since P+

i = P add
i (c+i ) (connected

by Def. 1), or P ID,+
i = P ID,−

i (connected by inductive
assumption) connectivity of P ID,+

i follows. Now consider
P IDj , j 6= i. If T−j 6= 0, then P ID,−

j = P ID,+
j and

connectivity of P ID,+
j follows. Suppose T−j = 0 and P ID,+

j

is not connected. Then, P+
j is not connected: if it were,

there would exist k ∈ P+
j with ID+

k /∈ {i, j}, contradicting
Prop. 2, satement. Thus, there exists k1 ∈ P ID,+

j such that 1)
k1 /∈ P add

i (c+i ), and 2) any length-minimizing path in G(P−j )

spanning k1 and c+j contains some k2 ∈ P add
i (c+i ) = P+

i (c+i ).
Select one such path and vertex k2. Assume without loss of
generality that there exists an edge {k1, k2} ∈ E . Def. 1
implies 1

si
dP+

i
(k2, c

+
i ) < min{ 1

s`
dP+

`
(k2, c

+
` )|` 6= i, k2 ∈

P+
i } and thus 1

si
dP+

i ∪{k1}(k1, c
+
i ) < 1

sj
dP+

j
(k1, c

+
j ). Since

T−j = 0 and ID−k1
= j, Prop. 2 implies 1

si
dP+

i ∪{k1}(k1, c
+
i ) <

1
sj
dP+

j
(k1, c

+
j ) = min{ 1

s`
dP+

`
(k1, c

+
` )|` 6= i, k1 ∈ P+

` }, con-

tradicting k1 /∈ P add
i (c+i ). Thus, P ID,+

j is connected. Invoking
Prop. 2 statement 3, the inductive assumption therefore holds
for all times prior to the p + 1st exchange, thereby implying
well-posedness of the first p+ 1 exchanges.

Proof of Theorem 2.
Statement 1: The proof of Thm. 1 implies the statement.
Statement 2: P is an m-covering of Q since P ID is always
an m-partition of Q (statement 1), and P IDi ⊆ Pi for any
i (Prop. 2, statement 1). P is connected, since Pi = P IDi

(connected by statement 1) immediately following any update,
and Pi is unchanged in between updates.
Statement 3: It suffices to show that IDci = i for any t and
any i: this would imply ci 6= cj for any i 6= j, and ci ∈ Pi

(Prop. 2). By assumption, IDci = i for all i at t = 0. The same

holds for any t prior to the first exchange between any agent
and the base station. Suppose IDci = i for all i (thus ci 6= cj
for any i 6= j) prior to the pth exchange. If agent i is the pth

communicating agent, lines 2 and 9 of Alg. 1 imply ID+

c+i
= i.

Since dP−j (c−j , c
−
j ) = 0 for any j, we have c+j /∈ P add

i (c+i ).
Thus, ID+

c+j
= j, and induction proves the statement.

Statements 4 and 5: Statement 4 follows from (1), noting that
PA
i = Pi. Statement 5 holds by assumption when t = 0.

Let k ∈ Q, and consider times when IDk changes (k is
re-assigned). Since supp(ΦA

j (·, t)) = Pj = PA
j for any j

at t = 0, statement 4 implies that, for any t prior to the
first reassignment, k belongs exclusively to supp(ΦA

IDk
(·, t)),

implying statement 5. Suppose statement 5 holds for all t prior
to the pth reassignment (occurring at time t0), and ID−k = j,
ID+

k = i 6= j. Then, T−j = 0 and k belongs exclusively to
P−j when t = t−0 (Prop. 2). By Alg. 1 and 2, k ∈ PA,pd,+

i

and T+
i > ω+

j + ∆ − t0 ≥ τA,+
i . Since supp(ΦA

i (·, t))
is not redefined for a duration of at least T+

i ≥ τA,+
i ,

(1) implies k /∈ supp(ΦA
i (·, t)) when t ∈ [t+0 , t

+
0 + τA,+

i ].
Since k is re-assigned when t = t0, k ∈ P+

i \P
ID,−
i and

T+
j = ω+

j + ∆− t0. Agent j will communicate with the base
at some time t1 < t0 + T+

j = ω+
j + ∆ < t0 + T+

i . Thus,
Ti > 0 when t = t1, and k is removed from both Pj and
supp(ΦA

j (·, t)). Thus, for all t > t0 +τ+
i and before the p+1st

reassignment, k belongs exclusively to supp(φi(·, t)).

Proof of Theorem 3. Thm. 2 implies statement 1.
Statement 2: For any i, 1) Ti = 0 when t = 0, and 2)
1
si
dQ′(k1, k2) ≤ d for any Q′ ⊆ Q, k1, k2 ∈ Q′. Thus, it

is straightforward to show that, for any i and any T , we have
the bound Ti ≤ ∆ + ∆H + d. We show that, for any i, the
bound τAi − t+ωA

i ≤ Ti−∆H holds by induction: Ti = 0 and
τAi = −∆H when t = 0 , so τAi − t + ωA

i = τAi ≤ Ti −∆H.
The bound similarly holds prior to the first exchange involving
any agent, since τAi − t = τAi − t + ωA

i ≤ −∆H ≤ Ti −∆H
at any such time. Assume the bound holds prior to the pth

update (occuring at t = t0). Consider 2 cases: if agent i is the
communicating agent, then τA,+

i − t+ωA
i = τ+

i := T+
i −∆H;

if not, then τA,+
i = τA,−

i and either 1) T−i = T+
i implying

the desired bound, or 2) T−i = 0 and τA,+
i − t0 + ωA,+

i =
τA,−
i − t+ ωA,−

i ≤ T−i −∆H = −∆H ≤ (ωA,+
i + ∆− t0)−

∆H = T+
i −∆H. This logic extends to all times prior to the

p+ 1st exchange and the desired bound follows by induction.
Using the bounds from the previous paragraph, we have

τAi + ωA
i ≤ t + ∆ + d. Fix t and k ∈ Prohi(t). Then, k ∈

PA,+
i = P+

i , k ∈ PA,pd,+
i , and t − ωA,+

i < τA,+
i (‘+’ is

with respect to the fixed time t). Further, over the interval
[t, ωA,+

i + τA,+
i ], the vertex k is not re-assigned, Pi is not

augmented, and τAi is unchanged . Therefore, k /∈ Prohi(t) at
time ωA,+

i +τA,+
i . If t0 := ωA,+

i +τA,+
i , we have t < t0 ≤ t+

∆+d. Since Ti ≥ τAi +∆H at time ωA,+
i , k is not re-assigned

during the interval [ωA,+
i , ωA,+

i + T+
i ] ⊇ [ωA,+

i , t0 + ∆H] ⊇
[t0, t0 + ∆H]. Thus k ∈ Pi\Prohi(·) over the same interval.
Statement 3: Fix t and suppose k ∈ P−i \P

+
i (in this proof,

‘+,−’ are with respect to t). Then, 1) IDk changed (k was
reassigned) at time t0 < t, 2) agent i communicates with the
base at time t, and 3) no exchanges involving agent i occurred
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during the interval [t0, t). Upon reassignment at time t0, Alg. 2
specifies that 1) Ti is reset to value ωA,−

i + ∆− t0, thus P IDi

is unchanged over the interval [t0, t), 2) k is added to PA,pd
IDk

,
and 3) τAIDk

, TIDk
are given values of at least

ω̃ := max
k̃∈P−i \P

+
i

{
ωA,−
i + ∆ +

1

si
dP−i

(
k̃, P ID,−

i

)
− t0

}
,

implying that PIDk
, ProhIDk

(·) remain unchanged over the
interval (t0, ω̃] ⊇ (t0, t+ 1

si
dP−i

(k, P ID,−
i )] ⊇ (t0, t].

Since coverage regions are connected and non-empty
(Thm. 2) and P−i ∩ P ID` = ∅ for any ` /∈ {i, ID+

k }
on the interval (t0, t] (Prop. 2), 1) there exists a path of
length dP−i

(k, P ID,−
i ) from k into P ID,−

i and every ver-
tex along any such path (except the terminal vertex) lyies
within P−i \P

+
i , and 2) P−i \P

+
i ⊆ ProhID+

k
over the interval

(t0, ω̃] ⊇ [t, t + 1
si
dP−i

(k, P ID,−
i )]. Since 1) each vertex

belongs to no more than two sets simultaneously (Prop. 2),
2) k ∈ P−i \P

+
i , and 3) no agent claims any vertex in the set

ProhID+
k

when TID+
k
> 0, vertices along the path (excluding

the terminal vertex) do not belong to Pj with j 6= IDk over
the interval [t, t+ 1

si
dP−i

(k, P ID,−
i )]. To complete the proof,

note that Alg. 2 implies T+
i > 1

si
dP−i

(k, P ID,−
i ), and thus

P ID,−
i ⊆ P IDi over [t, t+ 1

si
dP−i

(k, P ID,−
i )].

Proposition 3 (Cost). Suppose Assumption 1 holds and that,
upon each exchange, the base station and the communicating
agent update their respective variables via Alg. 1. If Φ(·, t1) =
Φ(·, t2) for all t1, t2, then H(c, P ID, ·) = H(c, P, ·).

Proof. Since Φ is static, H(·, ·, t1) = H(·, ·, t2) for any t1, t2.
When t = 0, P = P ID and thus H(c, P ID, 0) = H(c, P, 0).
The same is true prior to the first exchange between any
agent and the base. Suppose that immediately prior to the pth

exchange (occurring at t = t0, involving agent i), we have
H(c−, P ID,−, t0) = H(c−, P−, t0). Recall that, for any agent
j, Pj and P IDj coincide immediately following any exchange
involving agent j and, if agent j claims vertices from Pi,
then Alg. 2 guarantees that agent i will communicate with
the base station before any additional vertices are claimed
by other agents. At the time of the pth update, this logic,
along with Prop. 2, implies that P ID,−

i ∩ P−j = ∅, for
all j 6= i. Noting that c+i ∈ P ID,−

i , we deduce that any
single k ∈ P ID,−

i contributes equally to H(c+, P ID,+, t0)
and H(c+, P+, t0). If k ∈ P add

i (c+i )\P ID,−
i , then for any

j 6= i such that k ∈ P+
j , we have 1

si
dP+

i
(k, c+i ) <

1
sj
dP+

j
(k, c+j ) (Def. 1). Therefore, k contributes equivalently

to the values of both H(c+, P ID,+, t0) and H(c+, P+, t0).
Now suppose k ∈ P+

j \P
+
i , where P+

j ∩ P
+
i 6= ∅. We show

that dPID,+
j

(c+j , k) = dP+
j

(c+j , k): if a length-minimizing

path in G(P+
j ) between c+j and k is also contained in

G(P ID,+
j ), then the result is trivial. Suppose that every such

minimum length path does leave G(P ID,+
j ). From Prop. 2

statement 4, every k̄ ∈ P+
j must satisfy either ID+

k̄
∈ {i, j}.

Therefore, we assume without loss of generality that k is
adjacent to P+

i . Let k ∈ P+
i be a vertex that is adja-

cent to k and lies along a minimum-length path in G(P+
j )

spanning c+j and k. Since k ∈ P+
i \P

ID,−
i , we must have

k ∈ P add
i (c+i ) as constructed during the update, which implies

1
si
dP+

i
(k, c+i ) < min{ 1

s`
dP+

`
(k, c+` )|` 6= i, k̄ ∈ P+

` } and thus
1
si
dP+

i ∪{k}
(k, c+i ) < 1

sj
dP+

j
(k, c+j ). Since T−j = 0 and ID−k =

j, Prop. 2 implies 1
si
dP+

i ∪{k}
(k, c+i ) < 1

sj
dP+

j
(k, c+j ) =

min{ 1
s`
dP+

`
(k, c+` )|` 6= i, P+

` }, contradicting k /∈ P add
i (c+i ) ⊂

P+
i . Thus, dPID,+

j
(c+j , k) = dP+

j
(c+j , k), which, by inductive

assumption, implies that k contributes equally to the value of
both H(c+, P ID,+, t0) and H(c+, P+, t0). We conclude that
H(c+, P ID,+, t0) = H(c+, P+, t0). Since P , P ID, and c are
static between updates, the statement follows by induction.

Proof of Theorem 4. The value of H(c, P, t) is static in
between base station exchanges since P and c do not
change in between updates. Consider an update occurring
at t = t0 involving agent i. Noting Prop. 3, we have
H(c+, P+, t0) ≤ H(c−, P ID,−, t0) = H(c−, P−, t0). Thus,
the value H(c, P, t) is non-increasing as t → ∞. Since
Covm(Q) is finite, there must exist some time t0 after which
the value of H is static. Consider fixed t > t0 at which some
agent i communicates with the base. Since the value of H
does not change during the update, Alg. 1 implies that P ID

and c will be unchanged by the update. It follows that c and
P ID converge in finite time. Further, since P IDi ⊆ Pi for any
i (Prop. 2), we have P ID,−

i = P ID,+
i = P ID,−

i ∪P add
i (c+i ) =

P+
i . Noting the persistence of communication imposed by ∆,

the same logic implies that after some finite time, P and P ID

are concurrent.
We show that the limiting configuration is Pareto optimal.

Consider t0, such that for all t > t0, c and P are static and P
is an m-partition of Q. Since timers Ti are only reset when P
is altered, we assume without loss of generality that Ti = 0
for all i ∈ {1, . . . ,m} at any t > t0. Suppose that agent
i communicates with the base station at time t > t0. With
these assumptions, Alg. 1 implies that there exists no k ∈ Pi

such that
∑

h∈Pi
dPi(h, k)Φ(h, t) <

∑
h∈Pi

dPi(h, ci)Φ(h, t)
(otherwise the value of H would be lowered by moving ci).

Similarly, for any k ∈ Pj with j 6= i that is adjacent to
Pi, we must have 1

si
dPi∪{k}(ci, k) ≥ 1

sj
dPj (cj , k). Indeed,

if this were not so, there would exist k ∈ P add
i (c+i )\P−i ,

contradicting the convergence assumption, since P add
i (c+i ) =

P+
i . As such, for any i, there is no Q′ ⊂ Q\Pi such

that
∑

k∈Q′
1
si
dPi∪Q′(ci, k) <

∑
k∈Q′ min{ 1

sj
dPj

(cj , k)|k ∈
Pj , j 6= i}, which implies statement (ii) of Def. 2.

Proof of Theorem 5. By Assumption 2, no agent ever leaves
its assigned coverage region or enters its prohibited region,
provided no abrupt changes to these regions occur during
an update. Therefore, if no update ever occurs in which the
vertex corresponding to the communicating agent’s location
is removed from the relevant agent’s coverage region, then
the statement is immediate. Suppose now that, at some time
t = t0, agent i, whose location is associated with some
k ∈ PA,−

i , communicates with the base station and k is
removed, i.e., k /∈ PA,+

i . At time t+, agent i executes lines
5 and 6 of Alg. 3. Thm. 3, however, guarantees that 1) there
will exist a path in G(PA,−

i ) between k and the set P ID,−
i , 2)
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that all vertices along this path belong to ProhID+
k
\
⋃

j 6=ID+
k
P+
j

during the time period (t0, t0 + 1
si
dPA,−

i
(k, P ID,−

i )], and 3)

P ID,−
i ⊆ Pi := PA

i over the same interval. Therefore, if agent
i immediately starts moving along the path, its location will
lie exclusively within ProhID+

k
until it reaches PA,+

i .
It remains to show that no agent i ever enters Prohi(t).

Whenever agent i is executing lines 1−2 of Alg. 3, it follows
readily that it will not enter Prohi(t). We show that the same
holds when agent i is forced to execute line 5 and 6 of Alg. 3.
Without loss of generality, consider the update at time t0
previously described. Since k is re-assigned prior to the update
at time t0, we have Proh−i = ∅ (since vertices in Pi cannot be
claimed unless Ti = 0, implying t0 − ωA,−

i > τA,−
i ). Using

Prop. 2, we deduce that T+

ID+
k

> 0 and thus no vertices in

PA,−
i ∩ P+

ID+
k

can belong to PA,pd,+
i , and no vertex on the

constructed path between k and P ID,−
i belongs to Prohi(t

+
0 ).

Since T+
i > τA,+

i > 1
si
dPA,−

i
(k, P ID,−

i ), Prohi(·) remains

unchanged over the interval (t0, t0 + 1
si
dPA,−

i
(k, P ID,−

i )].
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