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The emergence of sensor networks operating at different
modalities, mobility, and coverage has opened the door to
systems involving diverse data sources and analysis tools.
These complex systems often contain both human and robotic
elements, and, in many cases, it is the job of humans to
process information generated by autonomous agents [1], [2].
The incredible amount of data generated by modern sen-
sors makes these human operators susceptible to information
overload, which can have detrimental effects on performance
and may lead to dire consequences [3]. To alleviate this loss
in performance, programs like the recent National Robotic
Initiative [4] emphasize collaboration between humans and
their robotic partners, and envision symbiotic mechanisms to
facilitate interactions between diverse system components.

This article focuses on the design of systems in which a human
operator is responsible for overseeing autonomous agents and
providing feedback based on sensor data. In the control sys-
tems community, the term human supervisory control (or sim-
ply supervisory control) is often used as a shorthand reference
for systems with this type of architecture [5]-[7]. In a typical
human supervisory control application, the operator does not
directly manipulate autonomous agents, but rather indirectly
interacts with these components via a central data-processing
station (see Figure 1). As such, system designers have the
opportunity to easily incorporate automated functionalities to
control how information is presented to the operator, and
how the input provided by the operator is used by automated
systems. The goal of these functionalities is to take advantage
of the inherent robustness and adaptability of human operators,
while mitigating adverse effects such as unpredictability and
performance variability. In some contexts, to meet the goal
of single-operator supervision of multiple automated sensor
systems, such facilitating mechanisms are not only useful, but
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Figure 1: A typical human supervisory control setup consisting
of 3 main components: the human operator(s), the data-
processing station, and the autonomous agents. Human oper-
ator(s) interact with the autonomous agents through the data-
processing station. The degree to which human performance
and input affects automation, as well as the method by which
sensor data is presented to the operators is determined by the
data-processing station and its internal functionalities.

necessary for practical use [8], [9].

A successful system design must carefully consider the goals
of each part of the system as a whole, and seamlessly stitch
components together using facilitating functionalities.

Design Considerations

The design of any effective supervisory control system starts
with a model of human cognitive processing [10]. This model,
which forms the “backbone” of the human-centered sys-
tem, must capture the operator’s underlying decision-making
mechanisms, while still taking into account the variability
that is inherent to human processing. Other factors, such as
mental workload, memory, and fatigue, can significantly affect
these driving mechanisms as well, and may also need to be
incorporated into the model to achieve design goals.

Once an appropriate model has been constructed, the question
becomes how to use the information that the model provides to
manage data presentation and automated control schemes. For
example, data collected by autonomous agents in supervisory



control applications is often of a visual nature, that is, photos
or video. Given such visual imagery, can operator perfor-
mance, imagery characteristics, and system parameters be used
to decide which region of the image the operator should
focus on? If multiple images are waiting to be processed, is
it possible to determine how much time the operator should
spend on each image? Can system parameters be adjusted to
react to non-optimal user behaviors in real time? How should
the autonomous agents take human responses into account?

It is apparent that an effective system design incorporates a
broad range of theoretical and practical tools from many sci-
entific disciplines, including control systems, human factors,
and psychology. As such, practitioners face a series of diverse
and complex choices when deriving models and strategies
to govern system behavior. The goal for this article is to
provide insight into some of these choices through examination
of common theoretical tools relevant to each of the main
components making up a supervisory control system; namely,
the human operator, the autonomous agents, and the interface
between them. In particular, the discussion is focused on those
tools that have close ties to control and dynamical systems.
Throughout the discussion, key challenges that arise both in
practical implementation and in combining these tools for use
in the overall system are highlighted. In some sense, this article
can be thought of as a brief survey of work relevant to the
design of human supervisory control systems; however, the
article also serves to provide a proof of concept, by illustrating
how basic, well-studied theory from various disciplines can
work together for use in a broader, human-centered systems
perspective.

The following discussion is not, by any means, intended to
provide an exhaustive review of all relevant theory, but rather
is intended to give control practitioners a flavor for the types
of models that are being used and the unique issues that can
arise in this type of application.

State of the Art

Automation can be formally defined as the “execution by a ma-
chine agent of a function that was previously carried out by a
human” [11]. In this broad context, the use of human operators
to monitor the functionality of automated systems has arisen
in widespread domains. Examples of current applications
that incorporate human-centered automation systems include
dynamic positioning systems in maritime applications [12],
command and control systems for monitoring satellites and
space assets [13], automated vehicle operation aids [14], avia-
tion accident and emergency response systems [15], numerous
military operations [16], [17], medical imaging systems [18],
advanced traffic management and intelligent transportation
systems [19], and many more.

As a consequence of this growing interest in human su-
pervisory control, a large body of research has focused on
the direct incorporation of human performance models into
autonomous system design. Significant research efforts have
gone into finding systematic ways of distributing operator
cognitive resources. In some approaches, the human decision-
making process is unregulated, but the automated system is
tailored to the human operator’s cognitive requirements. The
fundamental research questions under this approach include
(i) optimal scheduling of the tasks to be processed by the
operator [20]-[26]; (ii) enabling shorter operator reaction
times by controlling the fraction of the total time during
which the operator is busy [27], [28]; and (iii) efficient work-
shift design to counter fatigue or interruption effects [29]. In
other approaches, both the operator’s decision-making process
and the autonomous agents are controlled. For example, the
human operator is given a set time to spend on each task,
and the operator’s decision is used to adaptively adjust overall
automation schemes or parameters. The fundamental research
questions under this approach include (i) determining optimal
operator attention allocation both within and across tasks [30]-
[32]; (ii) managing operator workload to enable better perfor-
mance [33]; and (iii) controlling autonomous agents to collect
the most useful information [33]-[35].

Many researchers have also studied adaptive strategies to
human-centered system design, in which both physiological
and performance measures are used to infer the operator’s
cognitive state (such as mental workload and operator in-
tentions), and automated functionalities are only triggered
when a nonoptimal or undesirable state is detected [36], [37].
However, the majority of such adaptive systems to date have
been experimental rather than practical due to difficulties
in constructing accurate indicators of the user’s cognitive
state [38]. Despite such difficulties, continually improving
accuracy and affordability of physiological sensors, such as
eye trackers and electroencephalography (EEG) devices, have
led to a better understanding of objective measures that can
give insight into operator cognitive behavior [39].

The remainder of this article discusses the three main com-
ponents of a human supervisory control system as defined in
Figure 1. Due to the vast amount of literature and theory that
is available on each of these topics, an exhaustive survey is
impractical for a single article. Therefore, the goal of providing
an illustrative orientation to human supervisory control is
accomplished by focusing the discussion on a subset of the
available literature which (i) is representative of the state
of the art approaches to human supervisory control system
design, (ii) is accessible to readers unfamiliar with human-
centered systems, (iii) is amenable to automated decision
support and other facilitating functionality design, and (iv)
effectively illustrates how familiar control theoretic tools can
be used in this setting. Most of the following discussion is
motivated by the control of mobile sensors that collect visual
data (such as unmanned vehicles taking photos or video),
although many of the concepts discussed readily extend to
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Figure S1: Setup for the example persistent surveillance mission.

Overview

To further illustrate the design principles discussed, the side-
bars in this article present an example human supervisory con-
trol problem that involves continuous search of target regions
by a mobile sensor. This type of persistent surveillance using
mobile sensors is applicable to a variety of real scenarios,
including military applications, such as area reconnaissance
and battlefield damage assessment, search and rescue oper-
ations, such as disaster assistance and target extraction, and
environmental monitoring tasks, such as the control of forest
fires and wildlife regulation.

An efficient persistent surveillance policy can have multiple
objectives, including minimization of the time between sub-
sequent visits to a region and minimization of the delay in
detecting anomalous events, such as the appearance of an
intruder or the onset of a fire. The fundamental tradeoff in
persistent surveillance is between the amount of evidence
collected from the visited region and the resulting delay in
evidence collection from other regions. In this example, the
objective is to address this tradeoff by designing an efficient
surveillance policy that takes into account human responses
to image analysis tasks, and subsequently collects evidence
from regions that are highly likely to be anomalous. Human
decisions regarding the collected evidence are considered in
conjunction with a cognitive model to determine the likelihood
of a region being anomalous. Finally, the integration of these
tools is illustrated through the design of a simple decision
support that determines how the operator should allocate time
to multiple image-processing tasks.

Setup

The primary objective in this example surveillance mission
is to detect, within a prescribed accuracy, any anomaly in a
discrete set of regions.

other related domains.

The mission setup is shown in Figure S1 and consists of three
main components, consistent with the abstraction in Figure 1:
(1) the autonomous system, (ii) the cognitive system, and (iii)
the data-processing station.

The autonomous system is a single unmanned aerial vehicle
(UAV) that surveys a set of regions according to a routing
policy. The UAV is equipped with a camera, and during each
visit to a region the UAV generates an image. The image is
sent to the data-processing station, which, in turn, sends the
image to the human operator (cognitive system).

The cognitive system is a single human operator who exam-
ines the image and decides whether an anomaly is present or
absent in the associated region.

In this example, the data-processing station consists of three
elements: (i) the decision support system, (ii) the anomaly
detection algorithm, and (iii) the vehicle routing algorithm.
The purpose of the decision support system is to use the
performance of the operator to suggest the optimal amount of
time that the operator should allocate to each perceptual task,
that is, each image generated by the UAV. Decisions made by
the human operator may be erroneous, and thus the anomaly
detection algorithm is a sequential statistical algorithm that
treats the operator’s decision as a binary random variable and
ascertains the desired accuracy of the anomaly detection. The
anomaly detection algorithm also provides the likelihood of
an anomaly at each region. The vehicle routing algorithm uses
the likelihood of each region being anomalous to determine
an efficient vehicle routing policy.

The goal of the overall system is to detect anomalies in
the shortest time interval possible, subject to a false-alarm
constraint. In subsequent sidebars, each problem component
is examined in detail.

HUMAN MODELING

Approaches to Modeling Human Cognition

This section provides an overview of a few common strategies

3 used to capture human cognitive behavior in tasks where a



person must choose between a set of alternative choices.

At a high level, the issue of producing a meaningful inter-
pretation of human behavior that can be used in prediction
and system design is a type of “black box” problem, similar
to those encountered in the modeling of uncertain dynamical
systems. That is, the aim is to model what occurs in a
system whose precise internal behavior is unknown, given
only information about inputs and outputs. If unknown system
parameters can be estimated and output quantities can be
isolated, then simple data fitting techniques can be used to
produce a functional relationship between the nature of a
stimulus, the state of the organism in question, and the output
quantity of interest. This relationship can subsequently be used
to predict future system behavior. Such fitting techniques have
been studied and employed in psychological contexts for a
number of years [40], [41]. These approaches are usually
simple and straightforward to implement, making them an
attractive option for applications that only require modeling
on a coarse scale.

Black box approaches, however, are often not sufficient for
capturing the relationship between physiological phenomena
that occur on a fine scale, such as neuronal activity, and
resulting behavior. In applications where these relationships
are of particular importance, alternative psychological models
that seek to explain cognitive behavior through direct links
with detailed anatomy and physiology of the human’s con-
tributive systems, such as the nervous and endocrine systems,
may be more appropriate [42]. Many such models try to
capture the decision process through the inherent dynamics
of interconnected neurons (see, for example [43]).

At a slightly coarser level, some constructs, such as ar-
tificial neural networks, seek to explain behavior through
massive parallel models that are composed of large numbers
of simple and uniform interconnected processing elements.
These constructs are called connectionist models or parallel
distributed processing (PDP) networks [44], [45]. Another
alternative modeling paradigm is the symbolic approach to
cognition, which is inspired by logic and digital computing
techniques, and sees reasoning as a process resulting from
the structured manipulation of symbolic representations. The
symbolic and connectionist approaches are complementary
in the sense that the former is quite efficient at modeling
knowledge representations, while the latter is more focused
on capturing the learning process. This disparity has lead to
development of hybrid connectionist-symbolic models [46].
Examples of well-known cognitive architectures that fall into
this category include ACT-R [47], Soar [48], EPIC [49], and
CLARION [50].

Cognitive architectures that adopt intricate connectionist
and/or symbolic components are usually very general, and
have the ability to capture a wide variety of complex behav-
ior [S1]. However, these architectures are primarily used in

modeling sensory evidence retrieval and storage, rather than
the dynamics of the evidence itself. As a result, cognitive
architectures alone may lack information required to model
low-level decision making behavior associated with particular
tasks [52]. In the context of perceptual choice tasks, a variety
of models can be used to more explicitly account for how
behavioral performance improves over time as a result of the
accumulation of sensory information. These models, called
accumulator or sequential sampling models, provide signifi-
cant insight into sensory evidence accumulation and behavioral
correlates of decision-making [52]. Accumulator models have
been used to predict human accuracy and reaction times,
applied to allow interpretations on practical problems such as
the effect of aging on performance, and also integrated with
neurophysiological data to provide a framework to connect
neuronal and behavioral measures [53]. Attempts to combine
these dynamic approaches with cognitive architectures and
develop a unified theory has been a subject of recent re-
search [52].

In general, no single approach to modeling human cognition
will be sufficient for all possible applications, and the plethora
of models that have been developed over the past century all
have merit in some domains. At a given level of granularity
with respect to descriptions of stimuli and behavior, there will
exist some model that describes relevant data as well as possi-
ble and more economically than is feasible at other levels [42].
For the purposes of designing automated systems to aid
operators in human supervisory control, black box statistical
models are often not detailed enough for the development of
on-line control schemes, while intricate physiological models
are usually too detailed or evolve at time scales that are too
accelerated to be useful in macro-scale operations. Further,
in supervisory applications, the dynamics of decision making
are often of more immediate interest than the physiological
mechanisms that drive sensory evidence retrieval and storage.

For these reasons, the remainder of the discussion on cognitive
modeling is focused on accumulator models that seek to
capture the sensory evidence accumulation process in forced
choice tasks. In addition to the reasons already mentioned,
accumulator models are relevant because they (i) have close
ties to dynamical systems, (ii) are widely used in cognitive
psychology, (iii) are relevant to visual perception which is a
commonly encountered task in supervisory control, (iv) are
abstractions of detailed physiological models [54], (v) have
been proven to capture a large amount of relevant behavioral
phenomena [55]-[57], and (vi) appropriately illustrate key
challenges involved in modeling human behavior. This, of
course, does not imply that other modeling techniques are
not pertinent to control; only that accumulator models are
powerful tools that are reflective of state of the art approaches
to supervisory control, are conducive to the exploratory nature
of this article, and give the unfamiliar reader a flavor of issues
that arise in cognitive modeling.



Two-alternative Forced Choice Tasks

A two-alternative forced choice task is one in which an opera-
tor must decide between two possible hypotheses. Models for
two-alternative forced choice tasks within continuous sensory
information acquisition scenarios rely on two assumptions:
evidence is collected over time in favor of each alternative
and a decision is made once a stopping criterion is met. A
few simplistic models, such as the linear ballistic accumulator
model, assume that evidence toward each alternative evolves
in a linear and deterministic manner toward a decision thresh-
old [58]. Such simplistic models allow for analytic solutions,
which can be analyzed to infer changes in drift-rates or deci-
sion thresholds. Deterministic models are usually insufficient
to adequately capture the complex nature of human cognition,
and thus virtually all other accumulator models assume that
the sensory evidence accumulation process has an element
of randomness. In this stochastic context, several models for
two-alternative forced choice tasks have been proposed [55];
however, almost all accumulator models are based on the
drift diffusion model (DDM) [59]-[61]. The DDM is popular
because: (i) it is simple and well characterized; (ii) it captures a
significant amount of behavioral and neuro-scientific data; and
(iii) many other models for two-alternative forced choice tasks
reduce to the DDM under optimal parameter choices [55].

In the most basic version of the DDM, evidence toward an
alternative is modeled as a variable x € R that evolves
according to the stochastic differential equation

dx(t) = pdt + odW(t), x(0)= =, (1)

where 1 € R is the drift rate, o € R is the diffusion rate,
W (-) is the standard Wiener process, and xo € R is the initial
evidence. For an unbiased operator, the initial evidence xg =
0, while for a biased operator z( captures the odds or the prior
probability of each hypothesis being true.

For the information aggregation model (1), human decision
making is studied in two paradigms, namely, free response
and interrogation [55] (see Figure 2). In the free response
paradigm, the operator waits to make a decision until the
evidence satisfies a pre-established criterion, while in the inter-
rogation paradigm, the operator must make a decision within
a pre-established time window. The free response paradigm
is modeled via two thresholds (positive and negative) and the
operator decides in favor of the first (second) alternative if the
positive (negative) threshold is crossed from below (above).
In contrast, the interrogation paradigm makes use of a single
threshold, and the operator decides in favor of the first (second)
alternative if the amount of accumulated evidence is above
(below) the threshold at the end of the allotted time.
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Figure 2: Curves illustrating decision-making paradigms for
the DDM. Each colored line represents an independent
decision-making task. (a) Free response paradigm for decision-
making. Evidence evolves according to (1) and the operator
makes a decision once a threshold is crossed. (b) Interrogation
paradigm of decision-making. Evidence evolves according
to (1) and the operator’s decision depends on whether the
evidence is above or below a threshold after a given amount
of time.

Free Response Paradigm

Typical evolutions of the DDM under the free response
paradigm are shown in Figure 2a. For equally likely alter-
natives, the two decision thresholds are chosen symmetrically.
If £n € R represents symmetrically chosen thresholds, the
expected decision time (Zpecision) Under the free response
paradigm is

21— e=2onle) g
p(e2nm/o® — e=2nu/o?) o

Thecision = u tanh LZ +
i o

Reaction time on a task is Tpecision + Zsm, Where Tsv € R g
is the time taken by sensory and motor processes unrelated
to the decision process. With proper choice of parameters, the
DDM (1) can predict reaction times with some success (see
Figure 3).
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Figure 3: (a) Empirical reaction time data taken from [23]. (b)
Decision times under the free response paradigm, as predicted
by an appropriately chosen DDM (1).
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The choice of the threshold is dictated by a tradeoff between



speed and accuracy. The two most common criteria to cap-
ture the speed-accuracy trade-off are (i) Bayes’ risk (BR)
and (ii) reward rate (RR) [55]. Bayes’ risk is defined by
BR = & Tpecision + &2Prwor, Where £1,62 € R are the cost
per unit delay in decision and the cost of error, respectively,
and Pk, 1S the error rate. For the DDM, minimization of BR
yields a transcendental equation for the threshold [55]
©20% AN un/e?) _ /o) _ )
& o2 )
Reward rate is generally defined by the proportion of correct
trials divided by the average duration between decisions [62]

1- PError
RR =
Dp]PEr[or + TReaCliOn + D
1- ]P)Error

B Dp]P)Error + TDecision + TSM + D7

where D € Ry is the delay between a correct response and
the next stimulus and D), € R>¢ is a penalty delay introduced
by an incorrect decision. Similar to the Bayes’ risk, the optimal
threshold for RR can be found by minimizing

% + D+ Tom + (D + Tsm + D), — g)e*@#“/*) = é.
These transcendental threshold equations can be solved numer-
ically, and &; and &» can be estimated from empirical data [55].
The accuracy of these optimal threshold selection methods in
predicting the speed-accuracy trade-off for human subjects has
been investigated in [63]. The interested reader is also referred
to [64] for a discussion on successes and shortcomings of such
optimal methods.

The previous discussion pertains to a single two-alternative
forced choice task. However, in most engineering applica-
tions, humans process a sequence of such tasks which im-
poses additional complexities. Researchers have found that,
broadly speaking, human decision-making in a sequence of
two-alternative forced choice tasks can often be effectively
modeled by a sequence of drift-diffusion accumulators with
sequentially updated initial conditions and thresholds [65]-
[68].

Interrogation Paradigm

Typical evolutions of the DDM under the interrogation
paradigm are shown in Figure 2b. The interrogation paradigm
relies upon a single threshold: for a given deadline 7" € R+,
the operator decides in favor of the first (second) alternative if
the evidence collected until time 7', (that is, (7")) is greater
(smaller) than a threshold. For equally likely alternatives,
the threshold is chosen to be zero. From (1), the evidence
collected until time 7' is a Gaussian random variable with
mean p7 + x¢ and variance 027 Thus, if v € R represents
the chosen threshold, the probability to decide in favor of the

first alternative under the interrogation paradigm can be written
in closed-form as

v—ul — xo)
oVT ’
(2

where ®(-) is the Gaussian cumulative distribution function.

P(z(T) > v) =1 — P(a(T) < v) = 1 —@(

Generalizations of the DDM

A myriad of other accumulator models consider generaliza-
tions of the pure DDM. These variants often serve to capture
additional behavioral characteristics that are not captured by
the dynamics in (1). For example, the Ornstein-Uhlenbeck (O-
U) model [69], [70] incorporates an additional linear term in
the evidence accumulation equation

dz(t) = (Ax(t) + p)dt + odW(t), x(0) =z, (3)
where A € R. The sign of A determines whether evidence ag-
gregation accelerates or decelerates with increasing evidence.
The O-U model (3) has a fixed point at x = —pu/\ and
thus this model can represent situations where evidence accu-
mulation asymptotes over time or, in other words, situations
where the human is never perfectly accurate. This is a feature
that the pure DDM does not have because (1) implies that
in the absence of noise a human will always make a correct
decision, given enough time. In the context of two-alternative
forced choice tasks, if A < 0 then (3) is the reduction of
what is sometimes called the leaky competitive accumulator
(LCA) model [71]. The LCA model is characterized by
leaky, stochastic, and competitive information accumulation
in nonlinear decision units (one for each alternative), and has
also been shown to capture neurally inspired properties, such
as lateral inhibition and recurrent excitation [72].

Other generalizations, such as the extended DDM [60], [73]
and the full DDM [74], incorporate additional parameters,
including a noise parameter associated with the drift rate,
a parameter characterizing initial latency, and a parameter
capturing bias in the initial accumulation process. These
variants have been shown to more accurately model the user
response time distributions than the pure DDM [61], [75].
Further variants introduce the use of collapsing thresholds,
where the decision-making threshold 1 € R is a function of the
form n(t) = ce™"t, where ¢ and r are constants representing
the initial threshold and the rate of convergence, respectively.
These collapsing thresholds can be thought of as an “urgency
signal” that prevents subjects from taking an excessive amount
of time when drift rates are close to zero [74]. In some cases,
collapsing threshold models can more accurately capture the
higher reaction times that often occur in trials that result in
an incorrect decision [76]. Optimality properties of collapsing
threshold models have been explored in several contexts,
including non-stationary environments [77], heterogeneous
environments [78], and decision-making under deadlines [79].



Discrete-Time Decision Making

The pure DDM is also related to classical hypothesis tests from
probability theory. In the free response paradigm, the DDM (1)
is the continuum limit of the sequential probability ratio test
(SPRT) [80], a test that can be used when evidence is acquired
sequentially at time steps £ € Zx>(. That is, the SPRT is equiv-
alent to the DDM in the limit as the time between samples
tends to zero [81]. Indeed, SPRTs utilize a statistic A, that is
incremented with each new observation y,. A decision is made
in favor of one of the alternatives once a threshold is reached.
With symmetric thresholds &+ A-pesh, unbiased initial evidence,
and independent observations, a standard SPRT for deciding
between hypotheses H°, H' is:

1: initialize Ag := 0;

2: at time ¢ € N, collect observation yy; .

3: integrate evidence Ay := Ay_1 + log %;

(decide only if the threshold Atpesn is crossed)

4: if Ay < —Athresn, then HO is true;
else if Ay > Aqpesh, then H! is true;
6: else continue sampling (step 2);

i

The statistic Ay plays the role of evidence in favor each
alternative. For sequentially accumulating data with known
sampling likelihoods under each hypothesis, the SPRT is the
optimal statistical test for two-alternative forced choice tasks,
in the sense that it achieves a given error rate in minimum
time [80], [82]. Despite this, some researchers argue that the
standard SPRT does not capture reaction times observed in
empirical data [73], and have turned to a variety of other
variations in attempt to increase accuracy. In the interrogation
paradigm, the DDM (1) is the continuum limit of the Neyman-
Pearson hypothesis test [83], a test designed to decide among
two hypotheses when the number of discrete data samples is
fixed a priori. Given a set of observations {y1,¥y2,.-.,Yn}
the Neyman-Pearson test calculates the likelihood ratio

P(HO ‘ y17y27'--;yn)
P(Hl ‘ylay27"'ayn)7

and rejects the hypothesis H? in favor of the hypothesis H*
if A is less than a threshold. Once again, the statistic A plays
the role of evidence accumulated in favor of each alternative
after a fixed amount of sampling. For a fixed number of data
samples with known likelihoods, the Neyman-Pearson test is
optimal in that it has the highest statistical power [84].

A(y17y27°"7yn) -

Multi-alternative Forced Choice Tasks

A multi-alternative forced choice task is one in which an
operator or observer must choose among multiple disjoint
hypotheses. Broadly speaking, researchers have attempted
to extend many of the same strategies for modeling two-
alternative forced choice tasks for use with multiple alterna-
tives through the use of race models [85], [86]. Race models

can be thought of as another variant of the pure DDM in which
each alternative is assigned its own separate accumulator. That
is, in a race model for an me-alternative forced choice task,
there are m evidence accumulation variables x1,xs2, ... %,
representing evidence accumulated in favor of each respective
alternative. Each of these variables then evolves according to
a random process (such as the DDM), and a decision is made
in favor of the alternative whose corresponding evidence x; is
the first to cross its respective evidence accumulation threshold
(or has the largest value at the deadline in the case of the
interrogation paradigm). The degree to which the accumulators
interact varies depending on the problem setup.

Classical race models have exhibited some success in cap-
turing behavioral phenomena. However, the multi-alternative
scenario is inherently much more difficult to model than the
two-alternative case [84]. For example, in discrete time the
SPRT is the optimal test for achieving a given error rate
in minimum time with sequentially accumulating data, but
it has been shown that it is difficult to create an analogous
constant-threshold multihypothesis sequential probability ratio
test that is optimal in the same sense [87]. Despite this fact,
some commonalities are generally accepted, such as Hick’s
Law [88], which states that in choosing between m alterna-
tives, if accuracy is fixed at a high rate, then the mean reaction
time increases at a rate proportional to log(m) (although the
exact form of this relation remains an open question). These
commonalities are often used in attempts to validate models.
For example, studies have shown that certain variations on the
0O-U model that are designed for multiple hypotheses [71], [84]
outperform classic race models in some respects and capture
the dynamics predicted by Hick’s law.

More recent models have incorporated the use of modern
technology. For visual stimuli, physiological sensing tools,
namely eye-tracking, have been used in the context of race
models as well. In this context, it is assumed that the relevant
parameters that govern the dynamics of each accumulator
are dependent upon the position of the observer’s gaze. For
example, it is assumed in [89] that the drift rate for a given
accumulator is higher when the observer’s attention is focused
on the alternative in question. Other works, such as [90],
have begun to use eye-tracking to explore the connection
between visual characteristics such as saliency to the evidence
accumulation process modeled via race model.

Exogenous Factors

Human performance models discussed thus far only capture
dynamics of evidence aggregation in decision-making. Exoge-
nous factors, such as workload, fatigue, situational awareness,
information retention, among others, also affect the decision-
making process. For brevity, this article does not include an
in-depth discussion of exogenous factors in evidence accumu-
lation models. However, to give the reader a flavor for the types
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Figure 5: Curves illustrating some key exogenous factors: (a) Performance as a function of operator stress, as described by
the Yerkes-Dodson law; (b) Task effectiveness of an operator who wakes up at 6am after 6 hours of sleep, as predicted by
the SAFTE model (5) using the default parameters in [91]; (c) Empirical memory retention data taken from [92], fitted with
a curve that is the sum of two exponentials and a constant function.

Figure 4: Many factors can affect the decision-making process.

of models that exists, a few key factors are briefly mentioned.
Note that these factors are closely linked with those discussed
in “Key Challenges.”

Mental Workload, Stress, and the Yerkes-Dodson Law

Mental workload is the extent to which a task places demands
on the operator’s cognitive resources [93], with a variety
of models further reducing the construct into various sub-
components [94]-[96]. Although operator mental workload is
generally a subjective experience, many researchers attempt
to capture this phenomena through more objective, quantifi-
able measures. For instance, operator workload is sometimes
modeled as the utilization ratio (the fraction of recent history
during which the operator was busy), with the utilization ratio
u following the dynamics

u(0) = uo, “4)

where b : Ryg — {0,1} represents whether the operator is
idle or busy, 7 € R is the sensitivity of the operator, and
ug € [0, 1] is the initial utilization ratio [28]. Typically, system
design focuses on methods of reducing workload to decrease
the strain on the operator, but when taken too far this approach
can result in performance degradation as well.

Closely related to mental workload is operator stress. The
Yerkes-Dodson law [97], [98] is a classical model that captures
the performance of an operator as a unimodal function of stress
level. A typical representation of this relationship is shown
in Figure 5a. The law demonstrates that there is a moderate
level of stress, dependent on the task, that optimizes operator
performance, while excessive stress (hyperstress) overwhelms
the operator and too little stress (hypostress) leads to boredom
and vigilance decrement [99]. Other work has expanded on
this concept through more detailed models which differentiate
between regions of psychological and physiological adaptabil-
ity [100].

Fatigue, Sleep Cycle, and the SAFTE model

Fatigue is defined as the feeling of bodily discomfort after
prolonged activity, and is known to have detrimental effects
on operator performance [101]. Several models have been
proposed to capture cognitive performance as a function of
sleep deprivation [102]. One example is the sleep activity
fatigue task efficiency (SAFTE) model [91], which assumes
that a fully rested operator has a finite reservoir capacity
R, that depletes over time while the operator is awake, and
replenishes when the operator sleeps. The SAFTE model



determines the task effectiveness (TE) as

TE = 100%@ + (o0 + CLQ%)
[cos (22(Tu =) +Beos (S (T —p—2))]. ©

where T, is the number of hours the operator has been awake,
Ty is the time of the day in hours, K is reservoir drain rate due
to wakefulness, a1, as, 3 € R are constants, p is the time of
the peak in the 24 hour circadian rhythm, and p’ is the relative
time of the 12 hour peak. Under this model, if the reaction time
of a fully rested operator is TReaction, then the reaction time of
the fatigued operator iS TRreaction/ TE. An example TE curve
generated using the SAFTE model is shown in Figure 5b.

Information Retention and Situational Awareness

Information retention refers to the fraction of newly acquired
information the operator remembers over time. Traditionally,
the curve has been modeled as an exponential decay [103].
Some researchers [104] argue that the information retention
curve should be modeled by a power-law function, while
others [92] model the curve as a sum of two exponential
functions and a constant function. An example of such a curve
fitted to empirical data from [92] is shown in Figure Sc.

In many tasks, including supervisory tasks, the operator must
not only perceive, process, and retain information, but also
apply that knowledge to formulate an accurate mental image
of their current situation. This leads to the notion of situational
awareness, which can be defined as the sum of operator
perception and comprehension of process information, and
the subsequent ability to make projections of system states
on this basis [105]. It has been argued that a lack of situa-
tional awareness results in poor performance by creating large
waiting times, that is, the operator takes more time to start
working on a task [106]. Situational awareness is critical as the
operator is incapable of making timely and effective decisions
without an accurate mental representation of the current and
predicted future state of their operational environment, but can
be difficult to moderate.

COORDINATION OF AUTONOMOUS AGENTS

The design of coordination strategies for systems of au-
tonomous agents is an issue that is at the heart of control
theory and has generated a vast amount of research (for
example, [107]-[111]). Here, the discussion is focused on
coverage problems in the context of wireless sensor networks
with a fixed number of nodes (agents), as this class of
problem is applicable in many human supervisory control
scenarios. Loosely speaking, the coverage problem is: given
a compact area of interest @ C R? and a team of agents

equipped with sensors capable of gathering information about
their surroundings, determine a strategy to deploy and control
the autonomous agents such that some coverage metric is
maximized. In supervisory control, the agents generally can
transmit data to a central location either by direct or multihop
communication. A few of the most common coverage prob-
lems are discussed and some theoretical tools that can aid in
solving them are highlighted below.

Static Coverage

The most basic coverage problem is that of static coverage,
that is, determining a priori a location where each of the agents
will remain for some time. When the area Q is relatively
small, the static coverage problem often reduces to the problem
of finding a location that maximizes the sensing footprint
of the agents. The well-known art gallery problem [112] is
an example of this type of coverage. The classic art gallery
problem involves simple polygonal environments and visibility
constraints; however, various extensions have been proposed
to incorporate issues such as holes in the environment [113],
additional coverage requirements [114], or sensor placement
specifications [115].

In many cases, the environment of interest involves an element
of stochasticity, that is, there is a probability density function
¢ : Q@ — Rs( that encodes the likelihood of some event
of interest occurring in any subregion. In this scenario, the
goal is generally to place the sensors in a way that maximizes
their ability react to events that may occur, proportional to the
function ¢. Often the static sensor placement issue reduces to
load-balancing. That is, each point in Q is assigned to one
agent, and the goal is to minimize a multicenter function H :
Qm X (2Q)m — Rzo,

H (e, m), (Pr,..., Pn)) :Z/ d(k, ¢;)p(k)dk,
i=1714%

where m € N is the number of sensors, (ci,...,¢y) repre-
sents the location of the sensors, (P, ..., P, ) is a partition
of Q (that is, satisfies |J;-, P, = Q and P, N P; = ) for
any i # j), and d : Q@ x @ — Ry is a distance metric.
Finding global minimizers of the function H is difficult in
general; however, algorithms exist for finding high-quality
approximate solutions in most typical cases. For example, if
d is taken to be the square of the Euclidean distance, then
the optimal sensor placement (ci,...,c,) and assignment
(Py,...,P,) forms a centroidal Voronoi partition. Finding a
(not necessarily globally optimal) centroidal Voronoi partition
can easily be achieved through the well-known the Lloyd
algorithm [116] and its variations. Additional partitioning
schemes have also been proposed to incorporate constraints
on coverage assignments [117], other cost functions [118], and
varying communication protocols [119].

A thorough review of static coverage approaches in fixed



EXAMPLE: PERSISTENT SURVEILLANCE MISSION
Human Performance Modeling

In the design of a human supervisory control system, the
choice of the human model forms the basis for the cognitive
system and supports virtually all other operations in the design
strategy. This section focuses on the design of a performance
function, which will drive the strategy for the rest of the
system design.

This example uses the DDM (1) as the basis for constructing
the human performance model. In general, human decision
making will hinge upon a variety of factors not captured by
the pure DDM. In this example, such exogenous factors are
not explicitly considered. However, it should be noted that
other decision-making models that do incorporate exogenous
factors can also be used to construct a performance function
in a similar manner.

The accuracy of decisions made by the operator is used
as a measure of the operator’s performance. Therefore, the
probability of making the correct decision is selected to be
the performance metric. The drift rates are assumed to be
symmetric, that is, the drift rates are +p and —p when
alternatives H° and H' are true, respectively. Recalling (2),
the performance function when alternative H° is true is
fO 8 RZO X [O, 1] — [0, 1],

sensor networks is provided in [120]

Dynamic Coverage

Dynamic coverage typically refers to those problems in which
a set of autonomous agents do not remain at fixed positions,
but rather continually move throughout the environment to
accomplish some task. Dynamic coverage is often used to
accommodate certain performance goals or environmental
characteristics that are not well suited to static coverage
schemes. For instance, large and time varying environments
(that is, those in which importance weights may change or the
likelihood of events of interest is time-varying) may be better
suited to dynamic coverage.

The dynamic coverage problem has several flavors, includ-
ing random and non-uniform spatial-temporal fields [123],
timevarying agent dynamics [124], dynamic vehicle routing
problems [125], and informative path planning [126]-[134].
One particularly relevant class of dynamic coverage problems
is persistent coverage or patrolling, where a set of vehicles
is required to endlessly survey an environment. This type
of coverage arises for applications such as the monitoring
of oil spills [135], the detection of forest fires [136], the
tracking of border changes [137], and general environmental
monitoring [138]. In persistent coverage schemes, vehicles
continuously visit regions in the environment according to
some policy that is deterministic or stochastic. Each of these
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Similarly, the performance function when alternative H' is
true is f1: R x [0,1] — [0, 1],
v+ ut — x())

i, = @(T

Given a prior probability 7 of the first alternative being true,
the overall performance f : R>o x [0,1] — [0, 1] is

f(t’ﬂ-) = ﬂ-fo(tvﬂ-) + (1 - 7"-).fl(tvﬂ—)'

This performance function is a sigmoid function of time.
Denote the k-th region by Ry, k € {1,...,m}. The surveil-
lance mission is modeled as a sequence of two-alternative
choice tasks and, accordingly, models the operator perfor-
mance as in (6). The two alternatives H®, H' in this setting
are the presence of an anomaly and the absence of an
anomaly, respectively. The performance of the operator at
region Ry, is denoted by fi : R>o x [0,1] — [0, 1]. This
presentation implicitly assumes that the evidence accumulated
in the different regions is mutually independent.

Pt =1- <1>(

(6)

cases is briefly discussed below.

Deterministic Policies

For regions of interest that are represented as open subsets of
Euclidean space, deterministic policies for persistent coverage
include the construction of predetermined motion routines
(such as lawnmower patterns), the adaptation the static cover-
age strategies [131], and the modeling of environments as ran-
dom fields and subsequent design of optimal trajectories [139],
[140].

In the context of discretized regions (that is, regions of interest
that are represented as a graph), many deterministic policies
rely on (i) computing a tour through the regions and (ii)
requiring the vehicles to endlessly move along the tour (see
for example [130], [134], [141], [142]). In several cases, the
discrete case is closely related to network location, multi-
ple traveling salesperson (TSP), graph exploration, or other
classic vehicle-routing problems. Indeed, almost all traditional
approaches to solving the discrete, deterministic, persistent
coverage problem rely on state-space decomposition, and TSP
tour computation [143]. However, recent works have looked
at non-TSP tours [134], [140] as well as non-tour based
policies [144].

Deterministic policies are often simple to implement, but are
mostly periodic and predictable, which may be undesirable. If,



EXAMPLE: PERSISTENT SURVEILLANCE MISSION
Vehicle Routing and Anomaly Detection Algorithms

This sidebar focuses on the construction of a vehicle routing
policy to govern motion of the UAV (autonomous agent). To
this end, a simple routing policy that directs the UAV to a
randomly chosen region during each visit is adopted. Recall
that the goal is to detect anomalies in each of the regions
of interest in the shortest amount of time, subject to a false-
alarm constraint. To be consistent with this goal, it is desired
that the probability of the UAV traveling to a given region
should be proportional to the likelihood of that region being
anomalous. However, since the decisions made by the human
operator may be erroneous, his/her input cannot be accepted as
a reliable indicator of the presence of an anomaly. Therefore,
the routing strategy needs a tool to accurately determine the
likelihood of an anomaly at each region.

The tool chosen for this example is a variation on the
standard cumulative sum (CUSUM) algorithm [121] called
the ensemble CUSUM algorithm [34], which is a statistical
quickest-change-detection algorithm consisting of a set of
m parallel CUSUM algorithms (one for each region). Ac-
cordingly, the binary decisions by the operator are treated
as Bernoulli random variables whose distribution is dictated
by the performance function. Subsequently, the ensemble
CUSUM algorithm is run on these decisions to decide reliably
on a region being anomalous. The standard CUSUM algorithm
requires the observations from each region to be independent
and identically distributed. However, the decisions made by
the operator do not satisfy these requirements. Therefore,
instead of the standard CUSUM algorithm, a CUSUM-like
algorithm for dependent observations [122] is used instead.
The ensemble CUSUM algorithm maintains a statistic AfC
for each region Ry, k € {1,...,m} and time step ¢. The
statistic at region Ry, is updated using the binary decision of
the operator whenever a task from region Ry, is processed. If
the statistic associated with a region crosses a threshold Aesh,
then the region is declared to be anomalous. The choice of
this threshold dictates the accuracy of the detection [121]. It is
assumed that once an anomaly has been detected it is removed,
and then, consequently, the operator’s belief about the region
being anomalous resets to the default value. Let k, represent
the region index of the /-th task, and let 7r£ represent the prior
probability of an anomaly at region & after processing the /-th
task. The ensemble CUSUM algorithm is

for example, the goal is to detect the existence of an intruder,
then the intruder may hide when a vehicle is nearby and thus,
most deterministic policies will fail [145]. (Although there do
exist a few deterministic strategies that partially address this
issue, such as those in [146], [147], which use ergodic theory
to produce vehicle trajectories that are largely unpredictable
to an outside observer.)
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: initialize ¢ := 1, AY := 0, for each k € {1,...
if decy == 1 and ¢, > 0, then

,m};
fke( fﬁﬂ-k@ ) }

= fk[(tfa”rké )

: else if decy == 0 and ¢, > 0, then

fk:g(tfv,ﬂke )
fk (te,ﬂ-kz )

(detect an anomaly if a threshold is crossed)
4. if Af;g > Athresh, then
5: declare an anomaly at region ky;
6
7

AY = max {O,Ai;l + log

@

Ak, =

2

— max {0, Af;" + log

\

: AﬁZ:O;
s set £ =0+ 1; go to 2;

Having established this anomaly detection tool, a simple
routing policy is employed that sends the UAV to each region
with a probability proportional to the likelihood of that region
being anomalous. In particular, the probability to visit region
Ry, is initialized to ¢f = 1/m and after processing each task,
the probability to visit region R is chosen proportional to
M /(14-¢M%). This simple strategy ensures that a region with
a high likelihood of being anomalous is visited with a high
probability. Moreover, it ensures that each region is visited
with a nonzero probability at all times and consequently, an
anomalous region is detected in finite time.

Note that such a simple vehicle routing algorithm only de-
termines the probability with which the UAV should visit
different regions and does not take into account factors such
as the geographic location of regions, importance weights
assigned to regions, vehicle travel times between regions, or
the difficulty of detection at each region. These factors could
be incorporated into the vehicle routing algorithm [34]; how-
ever, for simplicity of the presentation, such factors are not
considered here. Vehicle travel time and importance weights
are, however, taken into consideration in the design of the
decision support system, which is presented in subsequent
sidebars. Indeed, vehicle travel times are used to determine
the rate at which the UAV generates imagery to send to the
operator for analysis, and importance weights are used in
deriving the reward function used to optimize time allocations.

Stochastic Coverage Policies

In contrast to deterministic policies, stochastic coverage poli-
cies are often much less predictable. Although a few re-
searchers have adopted elements of stochasticity into surveil-
lance of regions that are represented by open subsets of
Euclidean space (for example, [148]-[150]), the majority of
existing policies assume discretized areas or discrete regions
of interest (for example, [151]-[153]). In light of this fact, the
remainder of the discussion is focused on discretized regions



of interest.

Stochastic coverage policies for discrete regions typically in-
volve an ergodic Markov chain in which each region represents
a state. Transition probabilities and stationary distributions
are then designed according to an appropriate surveillance
criterion. In general, the coverage criterion depends on the
mission objective. For example, if the mission objective is the
detection of anomalous regions, then the surveillance criterion
may be chosen to minimize the average detection delay [34].
The minimization of the average detection delay inherently
considers the difficulty of detection at each region, the travel
times between the regions, and the likelihood of each region
being anomalous.

For a single vehicle, there are two popular schemes to con-
struct a Markov chain with a desired stationary distribution
(surveillance criterion), namely, the Metropolis-Hastings algo-
rithm and the fastest-mixing Markov chain (FMMC) method.
The two schemes can be briefly described as follows. Consider
a set of regions modeled by the graph G = (V, &), where V is
the set of m nodes (each node corresponds to a region) and £ is
the set of edges representing the connectivity of the regions.
Let the surveillance criterion be ¢ = (q1,...,qm) € A
The Metropolis-Hastings algorithm [154] picks the transition
matrix A, that is, the matrix of transition probabilities from
each state to every other state of the Markov chain, as

if (i,7) ¢ €,
-}, if (i,5) € € and i # j,
L= 3700 i Aig, if (4,5) € € and i = j,
where d; is the number of regions that can be visited from
region R;. For the FMMC method, the transition matrix

A € R™*™ with a desired stationary distribution ¢ € A,,
is determined by solving the semidefinite program [155]

minimize ” \/éA\/é - qrootqr—(r)ot”Q

subject to  Al,, = 1,,,
QA=ATQ,
A;; >0, for each (i,j) € &,
A;; =0, for each (i,7) ¢ &,

where () is a diagonal matrix with diagonal q, g
(V41 --->+/dm), and 1,, is the vector of all ones. To achieve
the coverage criterion at an accelerated rate, a time-varying
Markov chain can also be constructed in the spirit of [152].
Variants on these algorithms exist that also seek to minimize
additional heuristics related to the chain, such as the mean
first-passage time (also known as the hitting time or Kemeney
constant) [156].

0,

min{d%_7

For multiple vehicles, remarkably little is known about the
design of cooperative surveillance based on “multiple Markov
chains.” A naive stochastic policy that achieves the coverage
criterion is to let each vehicle follow the single vehicle
policy. A drawback of such a naive policy is that two or
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more vehicles may survey the same region simultaneously,
which may introduce a risk of collisions and nonoptimal
coverage strategies. This drawback can be partially mitigated
by constructing a Markov chain on a lifted space from which
the undesired states are removed. Decentralized strategies,
such as the message passing-based auction algorithm in [145],
exist for constructing such policies.

INTERFACING HUMANS AND AUTONOMOUS AGENTS

Once a model of human behavior has been established and
the appropriate vehicle routing policy has been selected,
the last step in the design of a human supervisory control
system is the construction of the interface that links the two
components. This step is essentially “closing the loop” by
linking the autonomous agents with the human operator. As
discussed, efficient designs must incorporate automated mech-
anisms to facilitate interactions between system components.
Such mechanisms can take numerous forms, many of which
can benefit directly from the incorporation of control-theoretic
tools. This section provides illustrating examples of facilitating
mechanisms known as decision supports, focusing on those
that can be derived using control theory. The discussion
concludes by highlighting some key challenges to effectively
coupling humans and automated agents.

Decision Supports

Researchers have established a simplified four-stage model
of human cognition consisting of (i) information acquisition,
(ii) information analysis, (iii) decision and action selection,
and (iv) action implementation [161]. These abstract functions
operate at various levels of granularity within a given task, and
generally interact with each other in a continuous and complex
fashion. Indeed, one cognitive process may be used to make
decisions on low-level tasks, such as where to look next, while
a different, simultaneous cognitive process may be working to
make a dependent, higher-level decision, such as deciding if a
target is present. As such, there is potential to improve system
performance through incorporation of automated tools that
focus specifically on aiding decision making, and consequently
sharing the total cognitive load across system resources.

In this spirit, a decision support can be defined as any
automated function that supports the decision and action
selection stage of the cognitive process. In human supervisory
control, this can mean directing operator attention, providing
timing suggestions to the operator, preprocessing of tasks,
and/or adjusting automation parameters, among many other
possibilities. The specific form and potential for success of a
given decision support system varies by application and system
constraints. However, to illustrate how decision supports can
be integrated at various levels of system operation, some



EXAMPLE: PERSISTENT SURVEILLANCE MISSION
Decision Support System

The design of a decision-support system for the example
surveillance problem is now considered. Specifically, a sup-
port system is considered that uses operator performance to
suggest the optimal amount of time to be spent on each task.
Queuing theory has emerged as a popular paradigm to model
supervisory control systems [20], [23], [24], [27]-[30]. Ac-
cordingly, it is assumed that the images collected by the UAV
at the various regions over time are stacked in a queue, while
they await operator analysis. The images arrive to the queue
according to a stochastic process. A stability requirement is
imposed on the queue length, namely, the queue length should
remain finite for all time. The operator receives a reward for
a correct decision on each task, and operator performance is
quantified as the expected reward obtained after processing
the task. The goal is to suggest time allocations to tasks such
that the operator’s overall reward per unit task is maximized.
The system is designed under the following assumptions:
(i) operator performance functions for a task originating
from region R in absence and presence of an anomaly are
f2 i Rso x [0,1] — [0,1] and f} : Rxg x [0,1] — [0,1],
respectively; (ii) based on the importance of the region, a
weight w, € Ry is assigned to each task collected from
region Ry; (iii) tasks arriving to the queue while the /-th
task is served are sampled from a probability distribution that
assigns a probability qﬁ € [0, 1] to region Ry. Similar to (6),
the average performance function f : R>¢ x [0,1] — [0, 1] at
region Ry, is defined by fi (¢, m) = (1—7) fR(t, m)+7 fL (L, ).
Under the aforementioned assumptions, each task from region
Ry, is characterized by the pair (fx, wg).

For simplicity, the tasks in the queue are assumed to be
processed by the operator on a first-come-first-serve basis.
Let the ¢-th task in the queue be from region Ry,, and let
the belief of the operator about region Rj being anomalous
before processing the ¢-th task be 7T£_1. Initially the operator
is unbiased about each region being anomalous, that is,
7Y = 0.5, for each k € {1,...,m}. Given a time allocation
te € R-g to the ¢-th task in the queue, the operator’s belief
after processing the ¢-th task is estimated using the Bayes rule

ﬂ'ffllP’(decﬂH},tg)
771'5 (Z*qf_l)P(deCz‘H_?,tg)+7‘r§_l]?(decg|H.71,tg) ?

7Tj s

if j = ky,

otherwise,

where H) and H} denote the hypothesis that region Ry, is
nonanomalous and anomalous, respectively, dec, € {0, 1} is
the operator’s decision, and P(decy|-, t¢) is determined from
the performance function of the operator,

fke(t@ﬂ-kz )

The event that a region becomes anomalous corresponds to a
change in the characteristic environment, which may happen
at an arbitrary time. In a sequential change detection task, if
the belief of the operator about a region being anomalous

P(dec, = 1|Hy,, ) =
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is below a threshold, then the operator resets their belief to
the threshold value [157]. The threshold is chosen to be 0.5.
Consequently, the belief of the operator at region Ry after
processing the ¢-th task is 7}, = max{0.5, 7} }.

The system should suggest to the operator the amount of time
to spend on each task. To this end, support system is designed
to maximize the infinite-horizon average reward, under the
finite queue length constraint. The reward r : N X R>y —+ R
obtained by allocating time ¢ to the ¢-th task is

P t) = W, [k, (t7 W£;1)7

where ky is the index of the region that generated the /-th task.
The objective of the decision-support system is to maximize
the infinite-horizon average reward

i ftg

=1

Vive = liminf —
ave n—+4oo n

@)

while enforcing stability of the queue length. The solution
to (7) is computationally intractable in general. However,
a dynamic, approximate solution can be obtained under a
certainty equivalent assumption, which approximates future
uncertainties of the system by their expected values [158]—
[160]. Specifically, the expected value of the operator’s belief
at a future time is equal to operator’s current belief. Accord-
ingly, the vehicle routing policy and the performance functions
are stationary at all future decision times. The expected rate of
arrival of tasks into the queue using current system parameters
is \p = 1/(qﬂDq€ + ¢'"T), where q a vector of region visit
frequencies (as determined by the vehicle routing policy), D
is a m X m matrix whose 7, j-th entry represents the travel time
between regions R; and R;, and T is a vector whose entries
represent image-generation times in the respective regions.
Further, by the strong law of large numbers, the expected
value of the function V,,, while the ¢-th task is processed is
simply the expected average reward, calculated using current
system parameters, that is, Vive = > pe; qhwy fr (s, i b,
for some ¢}* representing a stationary amount of time to
be allotted to tasks originating from region Rjy. Therefore,
under the certainty-equivalent assumption, the optimal time
allocation to the /-th task can be approximated by solving at
each time step,

”reg /—1
ko )

Ms

maximize
tArsg {reg ireg
387 -5 0m

kwkfk

i 8
subject to Z gt < )\ ®)
‘

k
ty

m\l

>0, foreach k € {1,...,m},

subsequently choosing t, = tk f Note that the first constraint
enforces queue length stability [30], and that (8) is a knap-
sack problem with sigmoid utilities, whose solution can be
approximated [30].
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Figure 6: Distribution of foveal receptors as a function of radial
eccentricity, taken with permission from [163].

examples that operate on different decision-making tasks and
have the potential to drastically improve system performance
are discussed in what follows.

Attention Allocation as an Optimization Problem

In supervisory tasks in which the operator has multiple simul-
taneous responsibilities, the question of where and how the
operator should direct her/his attention becomes an important
component to task success. In visual perception tasks, low-
level decisions focus on where the operator should direct their
attention within a given image or video.

It is well known in psychology literature that evidence accu-
mulation in visual perception is highly dependent upon radial
eccentricity, that is, the angular distance of a stimulus from
the foveal region, the point in the visual field of highest
resolution. The foveal region corresponds to the point on the
stimulus at which the operator is directly looking. Indeed,
due to the high density of foveal receptors when compared
to the visual periphery (see Figure 6), evidence accumulation
is generally much faster when a person is looking directly at
a stimulus [162].

Suppose a model for a human operator’s accuracy in making
a decision about a particular target as a function of time and
radial eccentricity is given, and that access to a the operator’s
fixation locations in real time is available (an assumption
that is not unrealistic, given the increased availability and
affordability of eye-tracking hardware [164]). Assume also
that a given image is discretized into m disjoint, equally sized
regions. In a static image, the amount of evidence about some
target of interest is finite. Therefore, a differential equation of
the form

T = g(xkh 6)
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can be associated to each region k, where xj, is the amount
of evidence accumulated about the properties of some target
in region k, e is radial eccentricity, and g is a function that
relates these two variables to the speed at which the operator
accumulates evidence. Under this construction, the question of
directing operator attention within a search task reduces to an
optimization problem of the form

minimize Durtoial

{Fix1,...,Fix,,n}
m m
subject to E Tp =« Z Evidy,
k=1 k=1

where Fix; = (Loc;,Dur;) is a tuple encoding the location
and duration of the i-th fixation, n € N is the number of
fixations, Evidy is the total available information about the
target in region k, o € [0,1) is a constant that captures the
fraction of total information to be collected, and Durryy :=
>, Dur;. In other words, a sequence of fixations can be
estimated that enables the operator to accumulate a specified
fraction of available information about a particular image in
the shortest amount of time (in general, it will not be possible
to acquire all available sensory evidence in finite time). With
this information, it may be possible to direct operator attention
within image searches (assuming that it is possible to construct
visual cues that the operator will respond to, an issue that will
be discussed later).

In application, the function g could depend on many factors,
such as visual clutter of the image [165] and task diffi-
culty [166]. In addition, when the visual stimulus is a video,
then the amount of evidence present evolves over time, and
thus may not be finite. Further, a changing stimulus may alter
the evidence accumulation process, and thus the model may
need to be altered to take into account motion characteristics.

Timing as a Resource Allocation Problem

The goal for many supervisory control applications is to have a
single operator who is capable of processing multiple tasks or
data streams simultaneously [167]. In such tasks, the operator
must not only decide how to allocate their attention within
each task, but at a higher level must also decide how to
allocate attentional resources across tasks. Assuming tasks to
be processed are stacked in a queue, then the problem of
deciding how much time the operator should spend on each
task in the queue becomes a resource allocation problem.
Indeed, time can be thought of as a resource that needs
to be distributed among the necessary tasks. The inherent
dynamics in persistent task analysis missions make these
resource allocation problems a dynamic optimization. The
solution to such optimization problems can be computed
for small horizon lengths; however, for large horizons such
computations are often not tractable. Despite these difficulties,
high-quality suboptimal solutions can still be computed using
tools from control theory.



In a general sense, the infinite-horizon optimization for a
persistent task analysis mission can be formulated as fol-
lows. Consider a time-varying dynamical system of the form
Zoy1 = evoly(we,te,de), where £ € N denotes the task
index, z, € & is the state variable, t; € Ry>( is the time
to be devoted to the ¢-th task, d, € D is a disturbance, and
evoly : X X Ry9g x D — X denotes the evolution map of
the system. Given a stochastic model for {d,}scn, the control
objective is to solve the optimization

> g(we, te, de),
(=1

tecC,
ty >0, for each £ € N,

.. .1
maximize liminf —
t:={t}een TFON

©))

subject to

where x1 is the initial state, t is the sequence of times devoted
to each task, g : X Xx R>9 x D — R is the stage reward, and
C is a constraint set.

In general, the optimization (9) is hard; however, solutions
can often be approximated in a tractable way using receding-
horizon control [160]. Receding-horizon control approximates
the solution to the infinite-horizon optimization (9) by solving
a finite-horizon optimization problem at each iteration to
sequentially determine the control input. In the presence of
uncertainty, however, future parameters required for this finite
horizon optimization may not be known. A common strategy
for addressing this issue is to adopt a certainty-equivalent as-
sumption, which replaces future uncertainties of the system by
their expected values [158]-[160]. Specifically, the certainty-
equivalent receding-horizon control scheme determines the
control input at time ¢ by solving the optimization problem

1 .
maximize  — Y g(Teij,t5, desj),
to,t1.tn—1 n 0
7 . _ (10)
subject to (to,t1 .- tn_1) € Cy,
t; >0, for each j € {0,...,n — 1},
where {tAO,...i7 tn_1} is time allocated to each task over

the horizon, C; is a modified constraint set, and Z,4; is
the certainty-equivalent evolution of the system, that is, the
evolution of the system obtained by replacing the uncertainty
in the evolution at each stage by its expected value, T, = xy,
and dg, ; is the expected value of the uncertainty at stage £4-7.
The certainty-equivalent receding-horizon control scheme at
iteration ¢ solves optimization problem (10) and picks ¢, = £.
If the deterministic dynamic program (10) can be solved
efficiently, then certainty-equivalent receding-horizon control
offers a computationally tractable suboptimal solution to prob-
lem (9).

In some cases, it may be tractable to solve the optimiza-
tion (10) over very large or even infinite time horizons without
resorting to additional approximations. For example, suppose
that tasks are generated from k € {1,...,m} different sources
and stacked in the queue for analysis, and suppose that
q. € [0,1] represents the probability that the next task entering
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the queue is generated by the k-th source at time step /.
Further, suppose that under the certainty-equivalence assump-
tion the utility functions for each source and probabilities
qi k€ {1,...,m} are stationary. In particular, for each k let
f& : R>0 = R>( be a continuous, monotonically increasing
function representing the utility obtained by spending time ¢ on
a task generated by the k-th source. It is desired to maximize
the infinite horizon reward while requiring a finite queue at all
times. Invoking the strong law of large numbers makes solving
(10) in the limit as n — oo reduce to solving a knapsack
problem

. . YA Areg
maximize q fr(t
R ; kA5
m
. 1 (11)
subject to E grtE < %

k=1
8 >0, for each k € {1,...,m},

where A > 0 is the rate of tasks entering the queue (the con-
straint function will ensure that the queue remains finite [30]).
The control scheme would then choose ty = ¢, ef, where ky is
the region index of the ¢-th task. Although the problem (11) is
simpler at first glance, it may still be difficult to solve exactly.
For example, when the utility (reward) functions associated
with knapsack problems are based on accumulator models of
human decision making, they may take the form of sigmoid
functions, that is, the utility functions f; are sigmoid functions
of time. The knapsack problem with sigmoid utilities is an
NP-hard problem (although computationally tractable 2-factor
solutions have been proposed [31]). If the problem (11) can
be solved efficiently, an approximate solution to (9) can be
obtained by solving an infinite horizon optimization under the
certainty-equivalent assumption at each time step.

Simplifications, such as (11), must be used with caution since
small modifications to the problem structure may cause such
a formulation to lose validity. For instance, the addition of
deadlines on tasks or latency penalties (penalties due to delay
in processing a task) break this structure. In such scenarios,
it may be necessary to go back to solving (10) over a
short time horizon at each time step using standard dynamic
programming techniques.

Adaptive Automation as a Feedback Control Problem

In addition to attention-allocation issues, at a higher level of
granularity there is the issue of deciding what system functions
should be left to the human operator and what functions should
be automated. According to the 4-stage model in [161], each
of the stages of the cognitive process may be automated to
differing degrees within a single system. The choice of what
aspects to automate may vary based on application, or based
on the state of the operator.

In a supervisory role, most tasks in the action implementation



category (such as vehicle motion control) are automated at a
high level; however, even in this case there are design decisions
about how supervisory system should allow the operator to
issue commands to automated subsystems [168]. For example,
the authors of [169] show that a task-based control scheme
in which the operator is only allowed to issue high-level
commands, in many aspects outperformed a vehicle-based
scheme, where the operator can control the motion of each
automated agent individually.

Studies have shown that great care must be taken in choos-
ing the right level of automation for a given system, since
increased automation does not always lead to better perfor-
mance. Indeed, increased automation can lead to increased
operator complacency and bias [170]. As a result, researchers
have begun to study an adaptive approach, in which the level
of system automation is altered in an attempt to maintain
the operator’s cognitive state in some desired regime. In this
simplified sense, the issue of adaptive autonomy reduces to
a control problem. Indeed, if it can be verified that the level
of autonomy of a given system has some effect on operator
performance, then level of autonomy can be thought of as a
control input that can be used to guide user performance.

For example, suppose the operator’s workload is modeled via
the utilization ratio presented in Equation (4). Then, operator
workload is inversely related to the level of autonomy of a
given system. The Yerkes-Dodson law suggests that moderate
levels of operator workload (stress) lead to the highest levels
of performance. It is a natural step, therefore, to design a
feedback control law that adjusts automated functionalities
to keep the utilization ratio, and thus the operator workload,
within a moderate regime.

Of course, this type of control approach hinges on a myriad
of assumptions about operator behavior and its relationship
to performance, as well as the ability to accurately measure
the complexities of human cognition and performance in real
time. Some of these considerations are discussed in subsequent
sections; however, the underlying concept of relating automa-
tion parameters to performance and using this easily adjustable
parameter as a means of control is one that has received recent
researcher attention and will remain an important topic.

Key Challenges

Many of the formulations discussed assumed simplified mod-
els and optimization strategies that are loosely coupled across
system components. Although this framework may suffice in
some circumstances, in reality, a human supervisory control
system and an associated decision-support system operate
through a combination of driving factors that work together
simultaneously. As such, the discussion is concluded by high-
lighting a few key challenges to improving design strategies
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and effectively implementing them in practice.

Tightly Coupling System Components

In human supervisory control, the design of a decision-support
system and the design of coordination strategies for automated
agents are often treated as completely decoupled or loosely
coupled problems. In many instances there could be a tighter
coupling in how the performance of decision supports and
autonomous agents influence each other through the user. For
example, in some operational contexts, autonomous agents
may have to loiter until the operator can attend to them.
Such operator-induced delays could lead to degradation in
coverage performance. From a mathematical perspective, the
problem of scheduling both the user and autonomous agents
could be posed as a joint optimization problem to achieve
overall system objectives. Hence, the design of decision sup-
port systems and control schemes for autonomous agents
could be considered jointly. Further research is needed to
develop appropriate formulations of such problems, incorpo-
rating different dynamic and performance characteristics, and
developing tractable computational methods.

Assessing the Operator State

The creation of effective decision supports often hinges upon
the ability to accurately assess the operator’s cognitive state,
including situational awareness, perceived workload and fa-
tigue. However, it is difficult to assess such a state with
any degree of accuracy using current technology. Recent
technological advances have made the use of physiological
sensors, such as eye-trackers, electroencephalogram (EEG,
measuring cortical electrical activity), and electrocardiogram
(ECG, measuring heart beats), a viable option for providing
real-time data in many applications [164]. As such, a large
body of recent research has gone into finding correlations
between cognitive activity and objective measures, such as
pupil diameter [39], [171], blink rates [172], heart rate [173],
[174] , and EEG activity [175], [176].

Even though these studies have successfully found correlations
in certain scenarios, it remains difficult to use such findings
in practice. One reason is that it is difficult to control ex-
ogenous factors in real applications. For example, researchers
have found correlations between pupil diameter variations
and cognitive processing, but there are at least 23 factors
that can affect pupil size [177]. Thus, it is hard to rely on
pupil diameter alone as a reliable indicator of workload in
a scenario where outside factors are not carefully controlled.
Further complicating the issue, many physiological responses
are highly task dependent or dependent upon the individual
characteristics of the user. A more rigorous understanding of
these physiological correlations and user cognitive states, as
well as their sources of variation, are necessary.



EXAMPLE: PERSISTENT SURVEILLANCE MISSION
Numerical Simulations

The decision-support system designed in the previous sidebars
is now illustrated through a numerical example. The sample
surveillance mission involves four regions. The matrix of
travel times (given in minutes) between the regions is

0.0 221 345 9.0
D— 221 00 193 14.6
345 193 0.0 25.6
9.0 146 25.6 0.0

The time to collect information at each region is 10 minutes.
It is assumed that the performance of the operator is the
same at each region, and that the importance of each region
is equal to that of all other regions. Let the drift rate in
the DDM associated with the operator be © = —0.3 for
a nonanomalous region and +0.3 for an anomalous
region. Let the diffusion rate for the DDM associated with
the operator be o 1. Suppose regions Ri, Rz, R3, and
R4 become anomalous at time instants 20, 80, 140, and 200
minutes, respectively.

The optimization problem (8) is solved before processing
each task to determine the optimal time allocations for the
human operator. A sample evolution of the system is shown
Figure S2. For simplicity, it is assumed that the human
operator allocates precisely the suggested amount of time to
each task. The exact arrival time of each task is dictated by
the region selection policy, information collection times, and
UAV travel times. In this example, the average rate of arrival
over all analysis tasks is 0.125 tasks per minute (1 task every
8 minutes). Note that the actual rate of arrival is non-uniform
and thus varies over the course of the mission.

Note that the algorithm keeps the queue length close to unity.
The queue length increases only if there is a high likelihood
of anomaly at some region. Once an anomaly is detected,
the allocation policy drops pending tasks in the queue until
only one task remains. For this example, the threshold for the
CUSUM algorithm is chosen equal to 4, and once an anomaly
is detected the CUSUM statistic (shown in Figure S2c) resets
to zero. Under the routing policy designed in the previous
sidebars, with high probability, the UAV selects a region with
a high probability of being anomalous, which is illustrated by
the close correlation between the CUSUM statistics and the
region selection probability (Figures S2c and S2d).

Graphical User Interface Design

Graphical User Interfaces (GUIs) can have a drastic impact
on operator performance and the overall functionality of a
system [178]. As such, the issue of designing effective user
interfaces has been studied in a variety of contexts includ-
ing computer science, marketing [179], human factors [180],
psychology [181], and engineering [182]. Researchers have
studied a wide range of aspects of the interface design problem
and its impact on operator performance, including luminos-
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Figure S2: A typical evolution of the decision support system:
(a) Suggested time allocations to each task as a function of the
task index; (b) Queue length as a function of the task index;
(c) Value of the CUSUM statistics associated with regions
R1 (blue), Ry (orange), R3 (purple), and R4 (green) as a
function of time, plotted along with the CUSUM decision
threshold (red); (d) Region selection probabilities for regions
R1 (blue), Ry (orange), R3 (purple), and R4 (green) as a
function of time. Note that tasks arrive to the queue at an
average rate of 1 task every 8 minutes.
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ity [183], stimulus specifications [184], interactive window
characteristics [185], and many many others.

The standard means of evaluating GUIs is through usability
surveys. Some surveys, such as the System Usability Scale
survey [186], [187], have been studied extensively, and pro-
vide benchmark statistics. Other researchers have turned to
objective measures of usability that are more directly catered
to the particular application under consideration [188]. In the
context of supervisory control, GUIs play a key role in the



success of any system design, and must be carefully tested
before being employed in application.

Automation Bias and Operator Trust

Many automated systems that are designed to aid operator
performance rely on the use of opportunistic cues or sugges-
tions in attempt to guide operator behavior. Such forms of
indirect control are of no use unless the operator responds
to them in a meaningful way. Indeed, if the operator never
takes into account any of the automated suggestions, then
the whole purpose of providing them is defeated. On the
other end of the spectrum, if the operator always heeds
the automated suggestions without question, the operator can
become complacent and lose situational awareness, resulting
in performance degradation. This phenomena, sometimes re-
ferred to as automation bias, has been studied extensively
in attempt to understand its effects and the conditions under
which it occurs [170], [189], [190].

Both operator reluctancy to follow automated prompts and
automation bias are related to the issue of operator trust
in automation. This complex phenomena is hard to model,
due to its dynamic nature and its inherent situational and
interpersonal dependencies [191], [192]. However, a successful
human supervisory control system must employ tactics to
maintain adequate operator trust, while mitigating automation
bias.

Individual Differences and Statistical Uncertainty

For the sake of simplicity, most system designers create a
single, general-purpose model of human cognitive processing,
with the intention of using this model for all potential opera-
tors. However, different operators may have varying responses
to a given system design, and ignoring the vast differences
between individuals can greatly reduce accuracy in predicting
behavior. Indeed, factors such as personality traits [192], past
experiences [191], and even the operator’s current mood [193]
can all affect performance. Studies of individual differences
seek to resolve these shortcomings by identifying the ways
in which people with distinct attributes react to the same
situations in unique ways [194]. For example, research has
shown that the personality trait extraversion moderates the
relationship between stress and performance. Those with lower
extraversion are more resilient to periods of hypostress, and
those with higher extraversion are more capable of handing
hyperstress [195].

Recent research has been somewhat successful in identifying
specific traits that make a significant difference in operator in-
teractions with autonomous systems [192]. For instance, in the
context of supervisory control, high spatial ability, attentional
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control, and video gaming experience have all been shown
to lead to better performance in some aspects of a multiple
agent supervisory control mission [196]. Despite these results,
the relationship between individual operator differences and
performance remains complex due to task dependencies and
environmental sensitivity.

In addition to uncertainties caused by individual differences,
there is also, in general, a large amount of statistical uncer-
tainty involved in estimating model and system parameters.
Indeed, even for a particular operator, it may be difficult
(or impossible) to precisely determine the ideal parameters
for describing behavior. Errors due to such statistical uncer-
tainties can get propagated through a system design, causing
undesirable results. Some models partially address this issue
by directly incorporating auxiliary noise variables. For exam-
ple, the extended DDM [60], [73] and the full DDM [74]
introduce noise terms associated with the drift rate variable.
Other approaches to mitigating the effects of uncertainty focus
on optimal statistical data-fitting techniques associated with
particular types of models [197].

Further complicating the issue, many decision support systems
hinge on statistical models that make assumptions about some
underlying process. Violations to these assumptions create
another source of error. Some researchers have explored tech-
niques for relaxing standard statistical assumptions with regard
to tasks that are commonly encountered in supervisory control.
For example, techniques for introducing spatial correlations
in search tasks have been explored in the multi-arm bandit
problem [198]. However, as in any modeling application, some
assumptions will generally be unavoidable.

Although some work does exist, a thorough sensitivity analysis
and characterization of model uncertainty in the context of
human supervisory control is still largely an open problem.
It is clear that a more thorough understanding of system
robustness with respect to individual differences, as well
as statistical and modeling uncertainties, is needed before
successful implementation in practice.

CONCLUSIONS

Human supervisory control of robotic teams is an area that
has attracted a significant amount of research attention in
recent years, and will only continue to grow as sensor and
robotic technology becomes more advanced. The unique set
of challenges that this application brings about spans many
disciplines, including control systems, human factors, and
psychology. In a broad sense the human supervisory control
problem can be broken down into three components: the
human, the autonomous agents, and the interface between
them. In surveying each of these components and discussing
examples of relevant theory for each, it becomes apparent



that well-studied tools from different scientific disciplines can
work in conjunction with one another to create systems which
have the potential to drastically increase productivity and
efficiency in a given application. While many challenges still
remain, continued collaboration among scientific disciplines
will allow the maturation of future human supervisory control
technology.
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