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ABSTRACT
This paper outlines the development and testing of a novel,
feedback-enabled attention allocation aid (AAAD), which uses
real-time physiological data to improve human performance
in a realistic sequential visual search task. Indeed, by optimiz-
ing over search duration, the aid improves efficiency, while
preserving decision accuracy, as the operator identifies and
classifies targets within simulated aerial imagery. Specifically,
using experimental eye-tracking data and measurements about
target detectability across the human visual field, we develop
functional models of detection accuracy as a function of search
time, number of eye movements, scan path, and image clutter.
These models are then used by the AAAD in conjunction with
real time eye position data to make probabilistic estimations of
attained search accuracy and to recommend that the observer
either move on to the next image or continue exploring the
present image. An experimental evaluation in a scenario moti-
vated from human supervisory control in surveillance missions
confirms the benefits of the AAAD.
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INTRODUCTION
The maturation of visual sensor technology has steadily in-
creased the amount of real-time data that is available in modern
surveillance mission scenarios ranging across military, home-
land security and commercial applications. In many cases,
it is the job of a human operator to ensure that this data is
processed quickly and accurately. For example, supervisory
systems involving collaboration between human operators and
unmanned vehicles often require the sequential processing of
imagery that is generated by the autonomous vehicles’ on-
board cameras for the purpose of finding targets, analyzing
terrain, and making key planning decisions [39]. The incredi-
ble volume of data generated by modern sensors, combined
with the complex nature of modern mission scenarios, makes
operators susceptible to information overload and attention
allocation inefficiencies [9], which can lead to detrimental per-
formance and potentially dire consequences [44]. As such, the
development of tools to improve human performance in visual
data analysis tasks is crucial to ensuring mission success.

This article focuses on the development and experimental ver-
ification of a novel, attention allocation aid that is designed to
help human operators in a sequential visual search task, which
requires the detection and classification of targets within a sim-
ulated landscape. Our study is primarily motivated by surveil-
lance applications that require humans to find high value tar-
gets within videos generated by remote sensors, e.g., mounted
on unmanned vehicles; however, the presented method is ap-
plicable to a variety of application domains.

Specifically, the main contribution of this paper is the introduc-
tion and experimental verification of a real-time and feedback-
enabled attention allocation aid (AAAD), which optimizes
the operator’s decision speed when they are engaging in target
search, without sacrificing performance. The motivating ob-
servation is that humans have imperfect awareness of the time
required to acquire all task-relevant visual information during
search, and thus are generally inefficient at administering their
time when scrutinizing the data sets. The proposed aid makes
real-time automated search duration recommendations based
on three key metrics: 1) visual search time, 2) number of
eye movements executed by the observer, and 3) an estimated



target detectability based on prior measurements of both the
target visibility across the visual field and the observer’s fixa-
tions during search. In particular, these metrics are used by the
aid to estimate the time required for the operator to acquire the
visual information that is necessary to support the search deci-
sions, and subsequently indicate when this time has elapsed
via a simple indicator on the user interface. We experimen-
tally evaluate the AAAD in a simulated surveillance scenario
motivated by human supervisory control, and found a factor
of×1.5 increase in user efficiency in detecting and classifying
targets in realistic visual imagery from a slowly moving sensor.
The AAAD pipeline is generic and can readily be extended
and applied to other sources of images, i.e., satellite images,
astronomical images [6], x-rays for medical imaging [1, 13]
or security scanning [5], and video surveillance [45] which
include a human-in-the-loop [53, 52].

Our rigorous development of the AAAD also includes a num-
ber of secondary contributions, including: definition of de-
tectability surfaces based on eye-tacking measurements, in-
corporation of image clutter effects, creation of a composite
exploration map, and utilization of a probabilistic framework
for decision making when computing overall search satisfac-
tion based on time, eye movements, and detectability scores.

PREVIOUS WORK
Research in human computer interaction has capitalized on
basic vision science research by including samples of the the
visual environment through eye movements (active vision)
within a larger modeling framework that includes cognitive,
motor, and perceptual processing involved in visual search
(Tseng and Howes, 2015 [48] and Halverson and Hofson,
2011 [20] which expands on the work of Kieras and Meyer,
1997 [32]). Such models have been proposed for potential use
for computer interface evaluation and design.

Another line of research has focused on how to augment hu-
man capabilities in coordinating multiple tasks. For example,
models have been used to optimize how observers split their
attentional resources when simultaneously conducting two
different visuo-cognitive tasks [36].

Attention allocation aids have been studied in the context of
human supervisory control of large data acquired by multiple
automated agents (e.g., [46, 9]). Such scenarios present the
challenge of a human having to inspect large data sets with
possible errors due to visual limitations, attentional bottle-
necks, and fatigue. The use of advanced physiological sensing
through eye-tracking technology has become a viable option
for both the assessment of the operator cognitive state, and
the evaluation of operator performance in a number of real-
istic applications, e.g. [49]. One line of research attempts to
use eye-tracking measurements to detect physiological and
cognitive precursors to behavior such as perceived workload,
fatigue, or situational awareness. Indeed, objective measures
such as blink rates [51], pupil diameter [50, 31] , and fixa-
tion/saccade characteristics [2], all have correlations to cog-
nitive processing, although the use of such measurements as
reliable indicators of operator mental states is not fully under-
stood [12]. If undesirable states can be accurately anticipated
with physiological measures, then they can be used to drive

automated aids that mediate operator resources through, e.g.,
optimization of task schedules [38] or adaptive automation
schemes [22, 43].

Other researchers have utilized eye tracker technology to show
increased efficiency of human search by relying on a “divide
and conquer” collaborative search [57, 7]. In such schemes,
multiple observers (usually two) engage in target search simul-
taneously with real-time updates of their partners’ gaze and
access to voice communication.

A novel approach investigated in the current work is the design
of an attention allocation aid that uses eye-tracking data to
make real time inferences of the attained target detection ac-
curacy and critically, the time to achieve asymptotic accuracy.
Such estimates, which we will refer to as search satisfaction
time, are utilized by the attention allocation aid to recommend
that the user end the current search and move on to the next
data set. In addition, if the observer completes search prior
to the search satisfaction time, the eye position data can also
be utilized to assess whether some area of the image remains
unexplored, and suggest that the observer to further explore
that area.

The success of the proposed approach requires an adequate un-
derstanding of the relation between fixational eye-movements
and the accumulation of sensory evidence supporting task per-
formance. A critical component to understanding the contribu-
tion of eye movement to task performance is the dependence of
target detectability with its distance from the point of fixation,
commonly referred to as retinal eccentricity [11, 37, 33, 10].
Indeed, this relationship can be used to build attention-based
models for predicting performance [24]. Often, dynamic sen-
sory evidence accumulation models are also dependent upon
the nature of the stimuli. Our attention allocation aid relies
on a set of experiments measuring how accuracy in detecting
the target of interest varies with distance from fixation (retinal
eccentricity) and as a function of the presentation time of the
image data. These measurements are then used to implement
the AAAD and validate its utility in optimizing search. To our
knowledge the current approach for the AAAD and thorough
experimental validation is novel to the field.

We also note that a key difference of our work in comparison
to existing literature, is that our attention allocation aid is es-
sentially a back-end search optimizer, which tells the observer
when to stop search; rather than advising the observer where
to look (it does not compute fixation cue’s or saliency-like
maps [23, 8]).

MOTIVATION AND HYPOTHESIS
Humans have difficulty assessing when adequate visual in-
formation has been acquired during challenging search tasks
and optimally allocating their fixations over different parts
of the image [55]. The purpose of the AAAD is to utilize
in real time the temporal dynamics of the eye-position data
and the information acquisition process to recommend to the
observers that either all information has been acquired and
search can be terminated, or further exploration of the image
is required. The AAAD is expected to reduce both premature
image search termination and long periods of image search



when no target is present without compromising the search
task performance, i.e. detection and false alarm rates. Thus,
the AAAD should ideally improve observer’s efficiency in
completing more sequential search tasks in a given allotted
time period with a level of detection accuracy that is as good
or better than search without the AAAD.

In what follows, we present a series of experiments in order
to develop, calibrate, and test the effectiveness of the AAAD
in a visual target search/classification task. Subjects were
asked to search for people within simulated aerial images, and
subsequently classify whether or not the person was holding a
weapon. The stimuli and eye-tracking apparatus used in all of
our experiments are described below.

Stimuli Creation: A total of 273 videos were created, each
with a total duration of 120 seconds, where a ‘birds eye’ point-
of-view camera rotated slowly around the center. While the
video was in a rotating motion, there was no relative motion
between any parts of the video. From a repeated subset of the
original 273 videos, a total of 1440 different short clips were
created, which were subsequently divided into the 4 groups
(stimuli sets) that were used in subsequent experiments. Half
of the clips had person present, while the other half had person
absent. These short and slowly rotating clips were used instead
of still images in our experiment, to simulate imagery from
a moving sensor in a surveillance scenario. All clips were
shown to participants in a random order. The stimuli used
in all our experiments present varying levels of zoom (high,
medium, low) and clutter (high, medium, low).

Apparatus: An EyeLink 1000 system (SR Research) was
used to collect eye-tracking data at a frequency of 1000 Hz.
Each participant sat at a distance of 76 cm from a LCD screen
on gamma display, so that each pixel subtended a visual angle
of 0.022deg/px. All video clips were rendered at 1024×760
px (22.5 deg×16.7 deg) and a frame rate of 24 fps. Eye
movements with velocity over 22 deg/s and acceleration over
4000 deg/s2 were qualified as saccades. Every trial began
with a fixation cross, where each subject had to fixate the cross
with a tolerance of 1 deg.

DEVELOPING THE ATTENTION ALLOCATION AID (AAAD)
This section presents details about the development and cali-
bration of the AAAD. Here, preliminary experiments were run
to estimate perceptual performance curves (PPCs) (describing
the relationship between detection accuracy and each of three
metrics: time, number of eye movements, and detectability)
under various levels of image complexity (clutter and zoom
levels). These PPCs allow the identification of asymptotic
detection accuracy, which is the primary criterion used by the
AAAD to estimate expected detection accuracy in real time.

Experiment 1: Psychometric Data Collection
We performed two preliminary studies to generate the time,
eye movement, and detectability PPCs: a forced fixation
search (no eye movements allowed) and a free search ex-
periment. The free search data is directly used to compute
the relevant PPCs, while the forced fixation data is used to
calculate detectability surfaces that allow for the computation
of the detectability PPC. See Figure 1 for experimental flow.

Forced Fixation Search
A total of 13 subjects participated in a forced fixation search
experiment where the goal was to search within the visual
periphery to identify if there was a person present or absent
(yes/no task; 50% probability of person presence) and, in
addition, to identify if there was a weapon present or absent
(yes/no task; 50% probability of weapon presence contingent
on person present). Participants had variable amounts of time
(100, 200, 400, 900, 1600 ms) to view each clip. Clips were
presented in a random order, with the person at a variable
degree of eccentricity (1deg, 4deg, 9deg, 15deg) from point
of fixation. Subjects were not made aware of the eccentricity
values used in each trial. They were then prompted with a
Likert scale that required them to rate from 1-10 (by clicking
on a number) their confidence of person presence. A value of 1
indicated strong confidence of person absent, and a value of 10
indicated a strong confidence of person present – intermediate
values represented different levels of uncertainty. Values of 1-
5 were classified as person absent, and 6-10 were classified as
person present. A second rating scale (identical to the first) was
then presented, requiring the subject to rate their confidence
regarding weapon presence. Participants had unlimited time
for making their judgments, although no subject ever took
more than 10 seconds per judgment. There was no response
feedback after each trial.

Each subject participated in 12 sessions that consisted of 360
clips each. There were 4 stimuli sets (each set consisted of
unique images), and each participants viewed each set 3 times
in random order without being aware that the images were re-
peated (4 sets× 3 times = 12 sessions). Every set also had the
images with aerial viewpoints from different vantage points
(Example: set 1 had the person at 12 o’clock – as in North,
while set 2 had the person at 3 o’clock – as in East). To miti-
gate fixation bias, all subjects had a unique fixation point for
every trial associated with each particular eccentricity value.
All clips were rendered with variable levels of clutter. Each ses-
sion took approximately one hour to complete. The person,i.e.
search target, was of size 0.5 deg×0.5 deg, 1 deg×1 deg,
1.5 deg×1.5 deg, depending on the zoom level. If a subject
fixated outside of a 1 deg radius around the fixation cross
during the trial, then the trial was aborted.

Free Search
A total of 11 subjects participated in a free search experiment
where the goal was to detect and classify the person. Although
eye movements were allowed, subjects were not explicitly
told to foveate at the person (although they usually chose
to do so). Participants had twice the amount (200 ms, 400
ms, 800 ms, 1800 ms, 3200 ms) of time than in the Forced
Fixation Search. All observers began each trial with a fixation
at center of the screen. They then proceeded to scan the scene
to find a person and determine if the person was holding a
weapon. Once the trial time was over, they were prompted
with a “Person Detection” and “Weapon Detection” rating
scale, and had to rate from 1-10 by clicking on a number
reporting how confident they were on detecting/classifying the
person. Similar to the forced fixation experiment, participants
had unlimited time to make their judgments and did not receive
any feedback after each trial. No trials were aborted.
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Figure 1. Experiment 1: The forced fixation (top) and free search (bottom) experiments to obtain the time, eye movements, and detectability PPCs.
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Figure 2. Person and weapon detection performance in proportion cor-
rect (PC) and d′ space from the forced fixation search experiment. No-
tice that (a) and (b) are dual representations of each other. The bottom
curves in d′ space will be used to generate a detectability surface.

Each subject in the free search experiment participated in 6
sessions that consisted of two sets of 360 unique images. In
these sessions, each subject viewed one of the two sets of
images, and each set was presented 3 times leading to a total
of 6 sessions. Subjects were not made aware that the sessions
were repeated.

Fitting Perceptual Performance Curves (PPCs)

Motivation of PPCs
PPCs were constructed to relate performance to each of three
different metrics. The first metric is visual search time, since
it is well known that time affects visual search accuracy [15] –
the main intuition being that the more time a subject spends
scanning an image, the higher the likelihood of detecting the
target (person or weapon). The second metric is the number
of eye movements a subject performs while engaging in target
search. Typically, time will pass on as more eye movements
are produced, but there are some cases where scrutiny in classi-
fying or detecting a target is needed by spending long periods
of fixation. As an example, one could imagine an exploitation
vs exploration search scenario where a subject spends 1000
ms on a single fixation, given the difficulty to classify the
target (exploitation), as opposed to a scenario where the same
subject makes 3 sparse and exploratory fixations in the same
1000 ms time window to find the target (exploration). For this
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Figure 3. Sample person and weapon fixation maps generated from the
forced fixation search experiment (Fig. 2(b)). These fixation maps are
projections of Detectability Surfaces as described in the Supp. Mat.

reason we chose to make time and eye movements indepen-
dent metrics for our AAAD system. The third and last metric
is detectability. Here, a detectability score is constructed by
generating a pixel-wise map that quantifies localized informa-
tion aggregation in different parts of the image (as indicated
by eye movements), and subsequently combining the result
to quantify the target’s overall detectability. Following our
previous example, one could imagine that even if an observer
spends the allotted 1000 ms searching for a target and making
e number of eye movements in a small spatial vicinity, it might
not be a good strategy compared to spreading fixations across
the image. See Figure 3 for an example of such fixations
overlayed on different images.

We are interested in successful observer detection of the person
and the weapon targets. Given that our results show that the
weapon requires more time to detect than the person, the
AAAD recommendation to end search was based on the PPCs
corresponding to the detection of the weapon. Basing the
AAAD on the PPCs for the person detection would likely
compromise the detection of the weapon.

Computing PPCs
To model the target detection accuracy, we use the observer
hit rate (the proportion of trials that the observer indicated that
a target is present, given that a target is actually present in
the trial stimuli) and false alarm rate (the proportion of trials
that the observer indicated that the target is present, given that
no target is actually pesent in the trial stimuli). Hit rates and
false positive were represented as an empirical detectability
index (d′) and a decision criterion (λ ) using an equal vari-
ance normal Signal Detection Theory (SDT) model (Green
& Swets) [18]. We then fit the resulting data with curves to
model the functional relationship between the detectability
indices and each of the relevant performance metrics. The best
fit functions were then utilized with the equal variance SDT
model to generate estimates of attained accuracy in terms of
proportion correct (PC). Notice that proportion correct and hit
rate are different since proportion correct takes into account
both the hit rate and the correct rejection rate (proportion of
trials in which the observer correctly decided that the target is
absent).

For a fixed condition and setting (assuming Gaussian signal
and noise distributions), the general equations to compute
(d′,λ ) are [54]:

d′ = Z(Hit Rate)−Z(False Alarm Rate) (1)

λ =−Z(False Alarm Rate) (2)

where Z(◦) is the inverse of the normal cumulative Gaussian
distribution, and the hit/false alarm rates are calculated at
the given experimental condition and setting. Consider as
an example a condition and setting for the forced fixation
search experiment: Condition = (4 deg,200 ms), Setting =
(high zoom, low clutter). Likewise, a sample condition and
setting for the free search experiment: Condition = 400 ms,
Setting = (medium zoom,high clutter).

For the Time and Eye-Movements PPCs, we used a straight-
forward regression to find an exponential relation of the form
d′(x) = α(1− e−βx), where x : {Time, Eye Movements} and
β is constant, to obtain a continuous approximating function
for the collection of points d′ within a given setting.

To compute final Time and Eye Movements PPC curves, re-
call that there exists a function g(◦) that estimates PC, i.e.,
PC(x) = g(d′(x),λ (x)), where:

PC(x) = m(x)(Hit Rate)+n(x)(1− (False Alarm Rate))
(3)

and

False Alarm Rate(x) = Z−1(−λ (x)) (4)

Hit Rate(x) = Z−1(d′(x)−λ (x)) (5)

where m(x) and n(x) are variables that are contingent on the
number of signal (i.e. person/weapon) present and signal (i.e.
person/weapon) absent trials (m(x)+ n(x) = 1,∀x), and the
hit/false alarm rates are estimates of the true values at x. Here,
curves are fitted in d′ space, rather than directly from PC
space, to deal with possible unbalanced datasets with signal
present/absent trials (See Discussion).

In order to obtain the detectability PPC (Figure 4 (right)),
we perform a binned regression across all trials between the
respective PC performance from the free viewing task in Ex-
periment 1 and the values of a composite detectability score
D′ for each image. The score D′ in each trial was computed by
first generating a detectability surface from the user’s fixations
and the detectability curves (Figure. 2(b)), and subsequently
performing a spatial average. We note that the detectability
PPC is the only curve that is regressed directly to PC given that
the argument of our regression function is in a d′-like space,
thus λ ,m(x),n(x) need not be calculated. The training data
we have for this regression is from the free search experiment.

Further details regarding the generation of the Time PPC, Eye
Movements PPC, and Detectability PPC is provided in the
Supplementary Material.

Performance Criteria and AAAD Functionality
The AAAD was designed to integrate three different inputs
to compute search satisfaction. The three previous PPC in-
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puts can be seen as individual metrics on their own, and are
computed independently in the system.

Search Satisfaction Model
For computing general search satisfaction we require that all
three of the following conditions are simultaneously satisfied:

Pr[(PCT
max−PC(t))< ε]> η , (6)

Pr[(PCE
max−PC(e))< ε]> η , (7)

Pr[(PCD
max−PC(D′))< ε]> η , (8)

where PCT
max,PCE

max,PCD
max are the (fixed) asymptotic values

of PC with respect to the time, number of eye-movements,
and detectability PPCs given a (zoom, clutter) setting, resp.
PC(t),PC(e),PC(D′) are the current estimated values of PC
as calculated by the time, number of eye-movements, and
detectability PPCs, respectively, and ε,η are fixed thresholds.

An image is only said to have been adequately searched if
all criteria (6), (7), and (8) are simultaneously satisfied. Also
notice that the criteria (6), (7), and (8) are all non-decreasing
in their respective arguments (which are monotonically in-
creasing in time); thus a condition will never revert to being
“unsatisfied” after being satisfied. We will refer the above
search satisfaction criterion as PC general satisfaction.

Our motivation for using the above mentioned probabilistic
framework is to take into account the error bars of each time,
eye movements, and detectability curves that are zoom and
clutter level dependent. We include these error bars as Gaus-
sian standard deviations σ in our probabilistic computation:

Pr[(PCmax−PC)< ε]→ 1−Z−1(
PCmax−PC− ε

σ
). (9)

The above strategy can be thought of centering a gaussian
(µx,σx)B (PC,σ) at every point in the PPC curves, and com-
puting how far away the asymptotic performance PCmax is
from every point in the curve. Thus, we will find and select the
minimum point in the curve that fulfills this condition for each
time, eye movements, and detectability PPC. These are the
threshold PPC’s that once all of them are reached in real-time
on the AAAD system, the AAAD will trigger “On”. A value
of η = 0.025,ε = 0.02 was selected for our experiments.

Attention Allocation Aid Design
The Attention Allocation Aid system is designed to run in the
background of the simulation interface (see Figure 5). The
AAAD system starts by computing the clutter and zoom level
of the input image from the slowly evolving video clip in each
trial. It is assumed that the level of zoom (high, medium, or
low) can be obtained from ground truth settings, given that
a pilot can control a camera’s zoom level, while the clutter
level can be computed from the input image/video [56, 41, 35].
For our main experiments, we assumed that ground truth was
provided to classify images based on clutter, since our main
goal is to prove that the AAAD system works under ideal
conditions1. A thorough investigation of the use of clutter
models as ground truth predictors is left to future work.

As the trial progresses, the three PC vs {Time, Eye Movements,
Detectability} curves (Figure 4) are updated in real-time using
gaze location, fixation time, and saccade information obtained
from the eye-tracker. The Time PPC is updated at each frame.
The Eye Movements PPC is updated with an interruption-
based paradigm – contingent on the eye-tracker detecting an
eye movement. The Detectability PPC is updated only after
every eye movement event, given that we have the fixation
position and time. Each of the PC Satisfaction conditions (see
Eq. (6, 7, 8)) is monitored independently, and once all criteria
are satisfied, the AAAD systems switches from an “Explore”
to a “Move On” state, where observers are encouraged to cease
search, and make a decision.

Parallel to this, an Exploration map is computed in real-time in
the back-end. The goal of the Exploration map is to inform the
searcher where he/she has already searched, and to indicate
the highly cluttered regions where a person is likely to be. The
Exploration map has no knowledge of a target present/absent,
and only uses image clutter and observer fixations.

If an observer attempts to advance to the next image while
the AAAD system state is in “Explore” state, the Explo-
ration map appears for ∼ 120 ms. The map is weighted
by previously explored regions (computed via the detectabil-
ity surface; see Supplementary Material), such that, highly

1If we did not assume oracle-like inputs for zoom and clutter levels,
then not finding a significant effect, could be due to poor clutter
modeling, rather than poor AAAD system design.
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Figure 5. Attention Allocation Aid (AAAD) system diagram. From the start of each trial, the PPC curves are updated in real-time in the back-end,
waiting for General Search Satisfaction to be achieved. Possible user inputs (highlighted in magenta) are the space bar and the right arrow. The
right arrow takes the user directly to the decision menu terminating the trial, regardless of Satisfaction. The spacebar will lead the observer to the
Exploration Map, and later back to the original stimuli if Satisfaction is not achieved, or to the decision menu otherwise

cluttered and non-explored regions are highlighted. The Ex-
ploration map is computed as follows: Exploration map =
FC� (1−Detectability Surface), where FC is the feature con-
gestion [41] dense clutter map, � is the element-wise multi-
plication operator, and the detectability surface is normalized
to lie in the interval [0,1].

Notice that the only inputs (to the system) that the observer can
produce while performing a trial (besides passively providing
eye movements), are by pressing the right arrow key, which
forces the trial to terminate and the subject to make a decision,
irrespective of PC general satisfaction being achieved (for
both AAAD, and non-AAAD experimental sessions); or by
pressing the space bar, which activates the Exploration map
if PC general satisfaction is not achieved, and terminates the
trial if otherwise.

EVALUATING THE ATTENTION ALLOCATION AID
In this section we summarize a second experiment used to
evaluate the effectiveness of the AAAD. Two experimental
conditions were considered: A person and weapon search
and classification experiment with and without AAAD. The
goal of this experiment is to objectively measure any improve-
ments in the search task performance when the subjects are
assisted by the AAAD. Since it was the first time for all of
our second group of subjects to participate in an eye tracking
experiment, we decided to add two additional practice sessions
(twenty minutes each) where we would verbally explain the
non-AAAD and AAAD system.

After the practice sessions, half of the subjects were tested
starting with the AAAD condition and the other half started
without the AAAD condition. We counterbalanced our par-
ticipants to reduce possible learning effects. The group of
participants involved in Experiment 2, did not participate in
and were not aware of Experiment 1. The completion of the
first 2 practice sessions plus Experiment 2 with both condi-
tions (counterbalanced) took an estimate of 2 hours for each
subject. The same person and weapon present/absent statistics

of Experiment 1 were used for Experiments 2 and 3. Figure 6
illustrates the design of the search task without (top stream)
and with (bottom stream) the AAAD.

Experiment 2: AAAD Evaluation

Condition 1: Target search without AAAD
A total of 18 subjects participated in a non-AAAD target
search experiment where the goal was to complete as many
trials as possible in a 20 minute interval without sacrificing
task performance, where the task per trial was to correctly
detect and classify the target in the minimum amount of time.

Target detection involved reporting if the person was present
or absent in the scene, and target classification involved re-
porting whether or not the person had a weapon. Although
eye movements were allowed, subjects were not told explicitly
to foveate at the target (although this was usually the case).
In other words, it was possible for the subject to move on to
the next trial by detecting the target in the periphery [10]. A
fixation cross was placed at the center of the screen for uni-
form starting conditions across participants. After terminating
search, subjects were prompted with a “Person Detection” rat-
ing scale where they had to rate their confidence in a person’s
presence on a scale from 1-10 by clicking on a number. A
“Weapon Detection” rating scale then appeared where subjects
also had to rate their weapon detection confidence from a scale
from 1-10. Participants had unlimited time for making their
judgments, though no subject took more than 10 seconds per
judgment. There was no response feedback, i.e., whether their
detection responses were correct after each trial.

Condition 2: Target search with AAAD
The same 18 subjects participated in a target search experi-
ment in presence of the AAAD where the goal was same as
in the previous condition. In this experiment, the AAAD was
visibly turned on for the participants. They saw a text message
above the center stimuli with a caption: “Explore” or “Move
On”, and there was a colored square below the stimuli that
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System Evaluation

Non-AAAD AAAD

Average Trial Number (#) 54.33±2.26 57.94±1.74

Average Mean Time per Trial (s) 2.88±0.42 1.94±0.18

Person Hit Rate (%) 96.39±1.42 96.94±0.88
Weapon Hit Rate (%) 89.37±2.92 92.35±2.30
Person False Alarm Rate (%) 2.88±2.63 2.42±2.04
Weapon False Alarm Rate (%) 8.19±5.54 7.15±4.70
Person Miss Rate (%) 3.61±1.42 3.06±0.88
Weapon Miss Rate (%) 10.63±2.92 7.65±2.30
Person Correct Rejection Rate (%) 97.12±2.63 97.58±2.04
Weapon Correct Rejection Rate (%) 91.81±5.54 92.85±4.70

Mean Trial time vs Time Trigger (s) 2.32±0.10 1.37±0.05
Mean Trial time vs EyeMvmt Trigger (s) 2.35±0.10 1.37±0.05
Mean Trial time vs Detect. Trigger (s) 2.70±0.13 1.10±0.06
Mean Trial time vs General Trigger (s) 2.70±0.13 1.10±0.06

Table 1. General results of the systems evaluation without and with
AAAD. It should be noted that subjects were counterbalanced (half-split)
to start with or without the AAAD during evaluation to compensate for
learning effects. Average refers to the mean computed across observers.

was colored red or green depending on the AAAD status. Par-
ticipants were told to think of the AAAD as a stoplight: when
it was red they should keep looking for the person/weapon,
and should only move on to the next trial if the light turned
green or if they were confident that they had either found the
person/weapon or there was no person/weapon present.

RESULTS
Table 1 summarizes the results of both conditions in the second
experiment. There is a significant increase in number of trials
per person (M = 3.61, SD = 5.69, t(17) = 2.813, p = 0.015,
two-tailed), as well as a significant decrease in mean trial time
(M = −0.31, SD = 1.36, t(17) = −2.613, p = 0.009 ,two-
tailed) between AAAD conditions. Overall performance is
stable, though slight improvement is seen with the AAAD.

Significant differences of trial vs trigger times are also found.
The AAAD was ran in the back-end (but not visible to the
observers) in the non-AAAD condition, to compute these
measures. Notice that there is a virtual speed-up factor of:
×1.5, in terms of average mean time per trial across observers
when using the AAAD.

In addition we performed a related samples t-test (for person
tP and weapon tW detection) between the hit rates (MP = 0.54,
SDP = 3.65, tP(17) = 0.497, p = 0.626, two-tailed; MW =
2.97, SDW = 12.42, tW (17) = 1.016, p = 0.324, two-tailed),
false alarm rates (MP =−0.46, SDP = 2.98, tP(17) =−0.655,
p = 0.521, two-tailed; MW =−1.03, SDW = 6.42, tW (17) =
−0.684, p = 0.503, two-tailed), misses (MP =−0.54, SDP =
4.65, tP(17) =−0.497, p = 0.625, two-tailed; MW =−2.97,
SDW = 12.42, tW (17) =−1.016, p = 0.323, two-tailed), and
correct rejections (MP = 0.46, SDP = 2.98, tP(17) = 0.655,
p = 0.521, two-tailed; MW = 1.03, SDW = 6.42, tW (17) =
0.684, p = 0.503, two-tailed), and found no significant differ-
ences between non-AAAD and AAAD conditions. This last
finding is somewhat ideal as the AAAD is intended to either
preserve or improve these measures.

Finally, we decided to compare the trigger times of the time,
eye movements, detectability, and general satisfaction condi-
tions of the non-AAAD sessions with the AAAD sessions. For
comparison, we subtract the final trial time minus the respec-
tive trigger time. As such, these times can be thought of as
offsets. Note that although the non-AAAD condition does not
show any visible assistant to the observer, the PPCs are still
being computed in the back-end for the purposes of compar-
ative data analysis. We performed four independent samples
t-tests (Time: tT , Eye Movements: tEM , Detectability: tD, Gen-
eral: tG) collapsing all trials across all observers for these
times and found significant differences for all trigger case
scenarios, supporting the utility of the AAAD: tT (1920) =



−8.46, p < 0.0001, two-tailed; tEM(1900) = −9.03, p <
0.0001, two-tailed; tD(1192) = −11.52, p < 0.0001, two-
tailed; tG(1190) =−11.56, p < 0.0001, two-tailed.

DISCUSSION
Extensions of model validity beyond current scenarios:
Our results show the potential of a new approach in atten-
tion allocation aids that optimizes human search performance
by utilizing real time fixational eye movements with prior
measurements of target visibility across the visual field and
as a function of time. However, there are various potential
questions about the generalization of the model across search
scenarios.

Our development of the AAAD assumed a target that is present
in 50% of the images. A logical question arises as to whether
the framework can generalize to real scenarios in which the
target is present less frequently. Our model fits herein are
performed using signal detection theory metrics (Green and
Swets, 1967 [18]) that partition performance into an index
of detectability, which is invariant to target prevalence, and a
decision criterion, which has an optimal value (maximizing
proportion correct) that varies with target prevalence. The
model curves, which are utilized to make recommendations
to the user, specify proportion correct as a function of time,
eye movements, etc. and will vary with target prevalence.
However, the model can generalize such curves to varying
estimated target prevalence assuming an optimal decision cri-
terion for the given prevalence. Although, we have not tested
the generalization experimentally, the theory accommodates
such scenarios and generalizations.

For simplicity, our current work used a single target when
developing the AAAD. Another natural question to ask is
whether the proposed AAAD can still be used if there is the
possibility of multiple targets within a given image. Indeed,
it could be the case that multiple targets could change how
the aid operates within a given application. In some multiple-
target scenarios where the detection of even one target is suf-
ficient to trigger a decision, our strategy may still apply. For
example, for some medical applications, such as screening
mammography, finding at least one suspicious target triggers
a follow-up diagnostic mammogram. In other applications,
localization of each individual targets is important and might
require additional development of multiple target model curves
to use in conjunction with a prior distribution of the number
of targets within the images.

Impact of computer vision developments on proposed
AAAD framework: The recent advanced in computer vi-
sion might seem to diminish the contributions of the proposed
scheme if one assumes that all human search will eventu-
ally be replaced by machines. This is yet another reasonable
question to ask, since vision has thrived in recent years, in
part due to significant advances of Deep Learning [27, 26].
State of the art object recognition algorithms [47, 40, 21] have
achieved high performance on certain datasets (MNIST [28],
CIFAR [25], ImageNet [42]). However, the images in these
datasets typically present ideal scenes with large objects at the
center of an image and, currently, the ability of state of the
art algorithms to find small or occluded objects in cluttered

scenes (MSCOCO [29]) remains well-below that of humans.
Moreover, computers often show glaring errors that humans
would not make in what have been called adversarial exam-
ples [17] in the computer vision community (e.g. by rigging
individual pixel values in an image which ‘hacks’ a classifier,
a computer can wrongly predict that a white noise-like image
is a school bus with 99% confidence [34]). Furthermore, there
is still a fundamental lack of understanding with regard to
the effects of computer-aided detection aids as a substitute
for human observers in many application domains. For ex-
ample, computer automated detection is prevalent in some
countries to flag potential locations for radiologists scrutiniz-
ing x-ray mammograms. Yet there is no consensus about its
contributions to improving radiologists’ diagnosis accuracy
(e.g. Eadie, Taylor, & Gibson, 2012 [14]). As a result of these
deficiencies, human observation is still heavily relied upon in
a number of applications. As a result, there are many ongoing
efforts to reduce errors and optimize human visual search in
life-critical tasks from military surveillance [3], to security
baggage screening [19], and medical imaging [4].

What is quickly becoming prevalent across many applications
is the use of a computer aid that assists humans in localizing
potential targets [16]. The proposed AAAD framework does
not take into account the presence of a computer aid flagging
potential target locations. In some cases, the presence of a
computer aid is known to guide search with the risk of lead-
ing to over-shortened searches and missed targets that are not
flagged by the computer aid [30]. The underlying model in the
proposed AAAD allows calculation of an estimated observer
accuracy given a pattern of fixations, time and the target visi-
bility across the visual field. In principle, the model could be
used to predict if an observer is short-cutting their search (due
to the presence of the computer aid) and to alert the observer
to further search the image/s. Thus, the developed AAAD
framework could be potentially integrated with a computer
aid, although its main contribution would likely shift from
reducing search times to reducing missed targets.

Potential contribution beyond current application: Al-
though the presented work introduces an AAAD within the
context of a very specific task and images, our work serves
as a proof of concept for a decision aid design approach that
can potentially be applied to a variety of other applications
including baggage screening and medical imaging. The model
within the AAAD predicts performance on any given trial as
a function of time and pattern of fixations and could be po-
tentially used for quantifying the probability that a target was
missed on a given image given the observers’ search pattern.
Such probabilities of error could be stored with the images and
used later to identify images that require secondary inspection
by an additional 2nd human observer.

Arguably, the main limitation of the AAAD is that the model
relies on empirically measured curves describing the de-
tectability of the target across the visual field and as a function
of time. We are currently investigating how to predict target
detectability by analyzing image properties such as clutter in
real time, which would greatly benefit the application of the
model to broader domains.
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Figure 7. Sample Stimuli of Experiments 1 and 2. Left: we show random samples of person present, and weapon present in multiple clutter and zoom
conditions. Right: we show a magnified version of the (Low Zoom, High Clutter) setting. The box in green has been overlayed on each subimage to
reveal the location of the person and weapon when applicable.

CONCLUSION
Our experiments show evidence that our real-time enabled
support decision system dubbed AAAD optimizes user effi-
ciency in terms of an increase in the number of trials done as
well as a decrease in time spent per each trial, while maintain-
ing performance such as target hit rate and false alarm rate.
Thus, the AAAD system has successfully integrated asymp-
totic performance of search time, eye movements and target
detectability. We have described how to fully implement such
system through an initial psychometric experiments to find
perceptual performance curves for target search, as well as two
consequent experiments that verify the benefits of the AAAD.
Future computer-human interaction based systems could ben-
efit from implementing AAAD-like systems where having a
human-in-the-loop is critical to finding a target even beyond
surveillance systems, e.g., medical imaging, astronomical data
imagery and remote sensing.
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SUPPLEMENTARY MATERIAL
Additional PPC Computation Details
Time PPC: We use the equal-variance assumption Gaussian
model to retrieve λ , s.t. λ (x) =−Z( f̄ ), where f̄ is the average
number of false alarms across all 5 time conditions (200 ms,
400 ms, 800 ms, 1800 ms, 3200 ms). We use this model
because there is an equal number of person present/absent, and
weapon present/absent trials (contingent on person present).
This implies: m(x) = n(x) = 0.5.

Eye Movements PPC: Eye movements were quantized in all
our experiments as the number of saccades. We estimated
the observer bias λ , for every x = 0,1,2,3, ...,15 saccades,
and later computed a weighted average (inversely proportional
to the error bar size) obtaining a single estimate λ0 to serve
over all x conditions. We approximated m(x) = m0,n(x) = n0,
with the constants being proportional to the average number
of trials present and absent across eye movement conditions.

Detectability PPC: To create a composite detectability score
(D′) used as input of our Detectability PPC (Figure 4, right),
we created a detectability surface as seen in Figure 3 based on
the forced fixation detection curves. First, the forced fixation
detectability curves as shown in (Fig. 2(b)) were obtained from
the forced fixation experimental data in the dual d′ space as a
function of eccentricity e and parameterized by search time. A
logarithmic fit of the form d′(e) = α +β log(e), where α,β
are constants, was used to produce the curve for each search
time condition. Detectability was offset by 1 deg of eccentric-
ity given the forced fixation tolerance during Experiment 1,
and to avoid interpolation errors at d′(0 deg).

Then, we use the curves of Fig. 2 to create a detectability
surface as follows. We start by collecting all j fixation point
locations and times: (z j, t j) and creating a pixel-wise mesh
I of possible person eccentricities across the image on a per
observer basis. We compute the d′ value using the curves in
Fig. 2 for every point of the mesh I, given the time each fixa-
tion took and the distance between the fixation location and the
mesh-point location, i.e., t = t j and z= ||z j−z(p,q)||∀(p,q)∈ I.
Note that any fixation time and eccentricity can be extrapolated
from the forced fixation experiment. The surface is produced
by putting a normal axis to the image plane at the location of
fixation j, and performing a 3D rotation around this axis. This
idea is fundamentally an adaptation of the concept of surface of
revolutions, where the generatrix is the forced fixation function
d′(z) (Fig. 2), and the axis of rotation is perpendicular from
image I at location z j. We refer to this as a single-fixation sur-
face, which we denote (Detectability Surface) j. Notice that
this procedure does not require knowledge of the person loca-
tion, and can be thought of a non-normalized probability map
that shows likelihood of finding a person on the image given
any fixation location and time. The previous computation can
be easily vectorized.

Each generated surface is added linearly over each observer
fixation j to compute the (multiple-fixation) detectability sur-
face: Detectability Surface=∑ j(Detectability Surface) j over
the image I. We define the final composite detectability score
D′ as the spatial mean of the detectability surface over the
image I. These d′ scores can be added with an L∞-norm or
max (single-look strategy), L1-norm (late-variability model),

and L2-norm (likelihood ratio observer) [54]. We use a L1-
norm since real-time computations of detectability surfaces
are facilitated through vectorized addition: O(n) vs O(n2).

Instruction Delivery
Delivery of instructions to participants seemed to play a role
in the experiment and the use of the AAAD. In preliminary
versions of the AAAD, some subjects mistakenly thought
that the AAAD light (red/green) was a sign of whether the
person/weapon was present or absent. In other words, they
thought that the AAAD’s goal was to tell them if the per-
son/weapon was present or absent, instead of thinking of the
AAAD as a search time indicator on when to terminate search.
Instructions delivered in the final version (those used for the
experiments herein), made this distinction clear.

The most emphasized sentence of the instructions for Experi-
ments 2 and 3 was: “Observers should strive to accomplish
as many trials as possible without sacrificing detection perfor-
mance”. In addition, subjects were informally told: “(...) you
want to do the trials fast, but you don’t want to rush and end
up making careless mistakes”.

Other details that should be taken into account for functional-
ity of the AAAD is the possibility of subjects that were very
conservative i.e. they only moved on when the AAAD trig-
gered on; or, in contrast, subjects that ignored the AAAD in
general i.e. they rarely followed the AAAD given reasons such
as curiosity, possibility of deception, or general slow response
times. While we cannot control for this type of behavior, this
was not seen in our results subjects pool, and analyzing the
data over 18 subjects is a sufficient sample size to garner trust
in the overall system functionality.

η-Threshold Selection
High η values can lead to a very conservative thresholding
for the different PPCs in the AAAD, while low η values can
lead to aggressive thresholding in the multiple PPCs. Thus,
finding an “optimal” value for η requires fine-tuning. To
allow for this, we ran two preliminary experiments with the
AAAD, (one aggressive, one conservative), to later interpolate
a value that seemed reasonable, η = 0.025. Note that an
aggressive η might lead to observers ignoring the AAAD, and
a conservative η could be practically irrelevant to implement
given its low efficiency benefits.

The optimal η value will also depend on the nature of the
stimuli, the rigor of the task, and the level of expertise of the
participants. For example: pilots, radiologists, security scan-
ning personnel vs children, undergraduates, naive observers.

Exploration Map Use
The Exploration map was rarely used by the observers. Two
observers did not use it at all, and one observer used the map
on average at least once per trial. The mean number of times
the exploration map was used per trial across all observers was
0.20±0.09 requests/trial. Notice that observers observers can
request the Exploration map more than once per trial.

While we were not rigorous on participant feedback, more
than half the users informally reported “I did not find the
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Exploration map useful, if anything I found it confusing”,
less than half of the users reported “I used it whenever I
couldn’t find the target and to double-check my decisions”.
This response might be due to the short display time (120ms),
which might be insufficient for visually processing the map.

Number of Trials Comparison
While we found that there is significance in the number of
trials accomplished between the two conditions of Experiment
2, there are other factors why on average there might not be
a greater difference across all participants (proportional to
say the mean trial time difference). A possible reason is that
some participants had smooth runs during Experiment 2 with
very little or few broken fixations during the first stage of
both conditions (See Figure 6), while other participants had
more broken fixations in one Experiment or the other. Pre-trial
broken fixations can be due to a subject wearing glasses, eye
shape, iris color, pupil size, ethnicity, poor initial calibration,
etc.. These are external factors that can’t be controlled for, and
is also why we also emphasize the significance of our results
for the average trial time across subjects, which is independent
of how many broken fixations they had prior to each trial, or
how many trials they have accomplished.

Furthermore we performed two additional related sam-
ples t-tests to check if there were any differences in
terms of response time for both tasks (target detection
and classification), but did not find such differences:(MP =
0.12,SDP = 0.19, tP(17)= 1.161, p= 0.262,two-tailed;MW =
−0.12,SDW = 0.35, tW (17) =−1.771, p = 0.094,two-tailed).

Participant Feedback
More than one participant, informally reported “I felt like the
AAAD did not help me”, as well as “The AAAD helped me
confirm my decisions” and both of these opinions seemed to be
spread out across the pool of participants, and did not seem to
hold any relationship with their actual performance. Our most
interesting feedback was given by two or three participants
who explicitly mentioned that they felt like the AAAD was
indirectly pressuring them to complete each trial before it fired
on. This last feedback is quite interesting, since it implies that
behavior for certain individuals was motivated by trying to
beat the AAAD, rather than seeing it as a complimentary aid
to for search. This should be explored in future work.
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