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Abstract

This work proposes surveillance trajectories for a network of autonomous cameras to detect in-

truders. We consider smart intruders, which appear at arbitrary times and locations, are aware of the

cameras configuration, and move to avoid detection for as long as possible. As performance criteria we

consider the worst-case detection time and the average detection time. We focus on the case of a chain

of cameras, and we obtain the following results. First, we characterize a lower bound on the worst-

case and on the average detection time of smart intruders. Second, we propose a team trajectory for the

cameras, namely Equal-waiting trajectory, with minimum worst-case detection time and with guarantees

on the average detection time. Third, we design a distributed algorithm to coordinate the cameras along

an Equal-waiting trajectory. Fourth, we design a distributed algorithm for cameras reconfiguration in

the case of failure or network change. Finally, we illustrate the effectiveness and robustness of our

algorithms via numerical studies and experiments.

I. INTRODUCTION

Coordinated teams of mobile agents have recently been used for many tasks requiring con-

tinuous execution, including the monitoring of oil spills [1], the detection of forest fires [2],
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Fig. 1. This figure shows five cameras installed along a one dimensional open path. The field of view of each cameras is a

point on the path. Cameras coordinate their motion to detect smart moving intruders along the path.

the tracking of border changes [3], and the patrolling of environments [4]. The use of mobile

agents has several advantages with respect to the classic approach of deploying a large number of

static sensors, such as improved situation awareness and fast reconfigurability. In this paper we

address the challenging problem of scheduling the agents trajectories to optimize the performance

in persistent surveillance tasks.

Problem description. We consider a network of identical Pan-Tilt-Zoom (PTZ) cameras for

video surveillance, and we focus on the development of distributed and autonomous surveillance

strategies for the detection of moving intruders. We make combined assumptions on the envi-

ronment to be monitored, the cameras, and the intruders. We assume the environment to be one

dimensional, in the sense that it can be completely observed by a chain of cameras by using

linear motion only (the perimeter surveillance problem is a special case of this framework). We

assume the cameras to be subject to physical constraints, such as limited field of view (f.o.v.) and

speed, and to be equipped with a low-level routine to detect intruders that fall within their f.o.v..

We assume intruders to be smart, in the sense that they have access to the cameras configuration

at every time instant, and schedule their trajectory to avoid detection for as long as possible.

Since the probability of success of an intrusion increases with the time an intruder remains

undetected in the environment [5], we propose cameras trajectories and control algorithms to

minimize the worst case detection time and the average detection time of smart intruders.

Related work. Of relevance to this work are the research areas of robotic patrolling and video



surveillance. In a typical robotic patrolling setup, the environment is represented by a graph on

which the agents motion is constrained, and the patrolling performance is given by the worst-

case detection time of static events. In [6], [7], [8] performance evaluations of certain patrolling

heuristics are performed. In [4] and [2], an efficient and distributed solution to the (worst-case)

perimeter patrolling problem for robots with zero communication range is proposed. In [9] the

computational complexity of the patrolling problem is studied as a function of the environment

topology, and optimal strategies as well as constant-factor approximations are proposed. With

respect to these works, we consider smart intruders, as opposed to static ones, and we study also

the average detection time, as opposed to the worst case detection time only. In the context of

camera networks the perimeter patrolling problem is discussed in [10], [11], where distributed

algorithms are proposed for the cameras to partition a one-dimensional environment and to

coordinate along a trajectory with minimum worst-case detection time of static intruders. Graph

partitioning and intruder detection with minimum worst-case detection time for two-dimensional

camera networks are studied in [12]. We improve the results along this direction by showing that

the strategies proposed in [10], [11] generally fail at detecting smart intruders, and by studying

the average detection time of smart intruders. Complementary approaches based on numerical

analysis and game theory for the surveillance of two dimensional environments are discussed in

[13], [14]. Finally, preliminary versions of this work were presented in [15], [16].

In the context of video surveillance most approaches consider the case of static cameras, where

the surveillance problem reduces to an optimal sensor placement problem. In [17], [18], sensor

placement problems are considered in a static camera network with the goals of maximizing

the observability of a set of aggregate tasks that occur in a dynamic environment, and of visual

tagging, respectively. In [19], a resource aware scheme for coverage and task assignment is

considered. In the case of surveillance in active (PTZ) camera networks, there have been many

attempts to formulate feasible approaches for camera control in order to detect and track targets,

adapt sensor coverage, and achieve high image resolution; see for instance [20]. In [21], the

authors consider an image-based control scheme in a setup containing a “master” camera for

detection and tracking. In [22], [23], methodologies for obtaining high-resolution images in

camera networks containing both static and active cameras are developed and tested in a virtual

environment. In [24] a similar problem of opportunistic visual sensing is considered. In [25], the

problem of coordinating camera motion is addressed using a game-theoretic approach with the



assumption that the entire environment is covered at all times. Finally, the problem of context-

aware anomaly detection is studied in [26]. We depart from the aforementioned works with PTZ

camera networks in the following ways. First, we focus on the problem of intruder detection,

rather than tracking or scene analysis, and we define appropriate performance metrics for this

problem. Second, we do not make the assumption that cameras can cover the whole environment

at all times, and we develop coordination methods for the cameras to surveil the environment.

Third and finally, we do not require a source of global information for our algorithms, so that

our methods are fully distributed.

Contributions. The contributions of this work are as follows.

First, we mathematically formalize the concepts of cameras trajectory and smart intruder, and

we propose the trajectory design problem for video surveillance. We formalize the worst-case

detection time and average detection time criteria, and we characterize lower bounds on both

performance criteria.

Second, we propose the Equal-waiting cameras trajectory, which achieves minimum worst

case detection time, and constant factor optimal average detection time (under reasonable as-

sumptions). The Equal-waiting trajectory is easy to compute given a camera network, and it is

amenable to distributed implementation. In fact, we develop a distributed coordination algorithm

to steer the cameras along an equal-waiting trajectory. Our coordination algorithm converges

in finite time, which we characterize, and it requires only local communication and minimal

information to be implemented.

Third, we design a distributed reconfiguration algorithm for the cameras to react to failures and

to adapt to time-varying topologies. In particular, our reconfiguration algorithm takes advantage

of gossip communication to continuously partition the environment and, at the same time,

coordinate the motion of the cameras to optimize the detection performance.

Fourth, we illustrate our findings through numerical studies and experiments. Our numerical

studies verify our results for different network configurations. Our experiments validate our

modeling framework and assumptions, and show that our methods are robust to cameras failure,

model uncertainties, and sensor noise.

We finally note that our algorithms are applicable beyond the domain of camera networks. For

instance, we envision applicability to real-time scheduling for manufacturing, where tasks with

spatial and temporal constraints are allocated, and robots need to complete these tasks while



satisfying the given constraints [27], [28], [29].

Paper Organization. The remainder of the paper is organized as follows. Section II contains

our problem setup and some preliminary results. In Section III we present our main results, that

is, we propose and characterize the Equal-waiting trajectory, and we describe our distributed

coordination algorithm. In Section IV we detail our numerical studies and experiments. Section

V contains our algorithm for cameras reconfiguration. Finally, our conclusion and final remarks

are in Section VI.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

In this section we describe the one-dimensional surveillance problem under consideration, and

we present some useful definitions and mathematical tools for its analysis.

A. Problem setting and notation

Consider a set of n ∈ N identical active cameras installed along a one dimensional open path

(boundary) Γ of length L (see Fig 1). For ease of notation and without affecting generality, we

represent Γ with the segment [0, L], and we label the cameras in increasing order from c1 to cn

according to their physical position on Γ. We make the following assumptions:

(A1) the f.o.v. of each camera is represented by a point on Γ,

(A2) the speed vi of the i-th camera satisfies |vi| ∈ {0, vmax
i }, with vmax

i ∈ R>0.

For assumption (A2) to be satisfied, we let each camera be equipped with a low-level controller

that maintains the speed of its f.o.v. at 0 or vmax
i .1 Let vmax = max{vmax

1 , . . . , vmax
n }.

Let xi : R≥0 → Γ be a map, such that xi(t) specifies the position on Γ of the i-th f.o.v. at time

t. We define the patrolling window Ai = [`i, ri] ⊆ Γ of camera ci as the smallest segment of Γ

containing the f.o.v. of camera ci at all times, where `i and ri denote the start and end points

of the segment Ai, respectively. We assume the patrolling windows to be given and constant in

time (except for our analysis in Section V). We additionally assume that `1 = 0, rn = L, and

`i = ri−1, with i = 2, . . . , n, so that {A1, . . . , An} is in fact a partition of Γ.2 Finally, let di

1For instance, in order to move the camera f.o.v. along its panning direction, the controller may set the panning velocity of

the i-th camera to α̇i = vmax
i /(aisec2(α)), where α denotes the panning angle, and ai is the distance of the i-th camera from

Γ. See Section IV-B for a related example.
2As discussed below, this assumption ensures detectability of intruders (see equation (4)).



be the length of Ai, let dmax = max{d1, . . . , dn} and dmin = min{d1, . . . , dn}, and define the

longest cameras sweeping time as τmax = max{τ1, . . . , τn}, where τi = di/v
max
i is the sweeping

time of camera ci.

A cameras trajectory is an array X = {x1, . . . , xn} of n continuous functions describing the

motions of the cameras f.o.v. on Γ. We focus on periodic cameras trajectories, for which there

exists a duration T ∈ R≥0 such that X(t+ T ) = X(t) or, equivalently, xi(t+ T ) = xi(t) for all

i ∈ {1, . . . , n}. We say that a cameras trajectory is synchronized if there exists a time ti ∈ [0, T ]

such that xi(ti) = ri = li+1 = xi+1(ti) for each pair of neighboring cameras ci and ci+1.

Remark 1 (Two dimensional environment and f.o.v.) Our assumptions of one dimensional

environment and point-wise f.o.v. do not prevent applicability of our results to practical cases.

To see this, consider a surveillance task for a corridor of uniform width, and assume that the

cameras f.o.v.s are two dimensional surfaces on the ground plane. Additionally, assume that the

f.o.v. of each camera is sufficiently wide to span the width of the corridor when the camera is in

its resting state, that is, when it is viewing the area directly below its physical position. Finally,

assume that cameras sweep the environment, and that f.o.v.s of neighboring cameras form an

intersection that spans the width of the corridor at some locations (See Fig. 2). Partition the

environment into patrolling windows, in a way that each camera can entirely sweep its assigned

region. Let τi be the time needed by camera ci to sweep its region, and let di = τivi, where vi

is the speed of camera ci. It is now clear that (i) synchronization of the cameras depend only

upon τi, vi, and di, as captured by our simplified framework, (ii) our synchronization algorithm

is applicable for the realistic case of cameras with two dimensional f.o.v.s, since it only requires

the parameters τi, di, and vi to be implemented, and (iii) the detection performance obtained

on our simplified camera model is a conservative bound for the performance with cameras with

two dimensional f.o.v.s. In fact, at each time a camera with point-wise f.o.v. can only detect

intruders contained in a region of zero area. Furthermore, if we assume that the intruders only

appear at times and locations for which they are not detected immediately, then the performance

will be the same as in our simplified camera model. A related example is in Section IV-A. �
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Fig. 2. Fig. 2(a) shows the f.o.v.s of two cameras observing a corridor. In their resting state, the ground plane f.o.v.s are

sufficiently wide to span the width of the corridor. Since the ground plane f.o.v. is formed by intersecting a cone with a plane,

this condition guarantees that each f.o.v spans the width of the corridor as the camera sweeps the corridor. Fig. 2(b) shows two

neighboring f.o.v.s forming an intersection that spans the corridor width. The time instant at which this first happens is before

the f.o.v. centers of the cameras are aligned. Furthermore, notice that each camera has a rectangular subsection whose width

spans the width of the corridor. This rectangle is shown for camera ci as the area between the green dotted lines, and for camera

cj as the area between the red dotted lines

B. Model of intruder and performance functions

We consider the problem of detecting intruders appearing at random times and moving on

Γ. We model an intruder as an arbitrarily fast point on Γ, and we let the continuous map

It0,p0 : R≥t0 → Γ be defined such that It0,p0(t) describes the position of the intruder at a time t,

where t0 and p0 = It0,p0(t0) are the time and location at which the intruder appears, respectively.

We focus on smart intruders, which have full knowledge of the cameras trajectory and select

their motion to avoid detection for as long as possible. More formally, given an initial time

t0 ∈ R≥0, an initial point p0 ∈ Γ, and a cameras trajectory X , the trajectory I∗t0,p0 of a smart

intruder satisfies

Tdet(I∗t0,p0 , X) = max
It0,p0

Tdet(It0,p0 , X)− t0,

where Tdet(It0,p0 , X) is the time at which the intruder is detected by the cameras, that is,

t∗d(p, t0) = min{{t : p(t) ∈ X(t), t ≥ t0} ∪ {∞}}

Notice that the trajectory I∗t0,p0 is in general not unique.

We consider two criteria for the detection performance of a T -periodic cameras trajectory,

namely the worst-case detection time (WDT), and the average detection time (ADT). These two
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Fig. 3. This figure shows a 2τmax-periodic cameras trajectory in which cameras c1 and c2 are synchronized (x1(t) = x2(t)

for t = kτmax with k ∈ N>0; see Section II-A), while cameras c2 and c3 are not synchronized. Notice that, because of the

synchronization among cameras, intruder e1, and in fact any smart intruder appearing between cameras c1 and c2, is detected

at time kτmax, for some k ∈ N>0. Consequently, the worst-case detection time for intruders appearing between cameras c1 and

c2 is 2τmax. Intruder e2, and in fact any smart intruder appearing between cameras c2 and c3, may avoid detection by properly

choosing its trajectory.

criteria are formally defined as

WDT(X) = sup
t0,p0

Tdet(I∗t0,p0 , X)− t0, (1)

and

ADT(X) =
1

TL

∫ T

0

∫
Γ

Tdet(I∗t,p, X)− t dpdt. (2)

In other words, the WDT criterion measures the longest time that a smart intruder may remain

in the environment without detection, while the ADT criterion measures the average time that a

smart intruder may remain in the environment without detection, over the boundary Γ and the

periodicity T .

The worst case detection time criterion for static intruders, namely WDTs, is defined in [30]

as

WDTs(X) = sup
t0,p0

{t− t0 : t ≥ t0, p0 ∈ X(t)}, (3)

and it corresponds to the longest time for the cameras to detect a static intruder, or simply event,

along Γ. We next informally discuss the relation between WDT and WDTs, and we refer the

reader to [9], [10], [30] for a proof of these results. Let

WDT∗ = min
X

WDT(X), and WDTs∗ = min
X

WDTs(X).



Clearly, WDT(X) ≥WDTs(X) for every cameras trajectory X , as static intruders do not move

to avoid camera f.o.v.s. For instance, as shown by the example in Fig. 3, if a cameras trajectory

X is not synchronized but covers every location of Γ, then WDTs(X) <∞ and WDT(X) =∞.

Additionally, because the patrolling windows define a partition of Γ, it can be easily verified

that the static worst case detection time satisfies

WDTs∗ = 2τmax,

and that any 2τmax-periodic cameras trajectory achieves minimum static worst-case detection

time. Similarly, any synchronized 2τmax-periodic cameras trajectory X satisfies (see Fig. 3)

WDT(X) = 2τmax. (4)

In fact, since the f.o.v.s of neighboring cameras intersect at least once in any interval of length

2τmax, intruders cannot avoid detection for more than 2τmax. Thus, any synchronized 2τmax-

periodic cameras trajectory achieves minimum worst-case detection time (WDT and WDTs).

This discussion motivates us to restrict our attention to periodic and synchronized cameras

trajectories.

Problem 1 (Design of cameras trajectories) Consider an open path partitioned among a set

of n cameras, and let τmax be the longest cameras sweeping time. Design a cameras trajectory

X∗ satisfying

ADT(X∗) = ADT∗ = min
X∈Ω

ADT(X),

where Ω is the set of all synchronized 2τmax-periodic cameras trajectories.

Remark 2 (Optimal patrolling windows) We assume that the patrolling windows are given and

form a partition of the path Γ. With these assumptions, the worst-case detection time satisfies

WDT∗ ≥ WDTs∗ ≥ 2τmax, and any synchronized 2τmax-periodic cameras trajectory achieves

the lower bound (see the above discussion).

If the patrolling windows are not given but are still required to be a partition of Γ, then

the longest cameras sweeping time, and hence the worst-case detection performance, can be

minimized by solving a min-max graph partitioning problem [9], [30], [16]. We will discuss this

aspect in Section V, where we develop an algorithm to simultaneously partition the environment

and coordinate the motion of the cameras to optimize the detection of intruders.



If the patrolling windows are not required to be a partition of Γ, then the bound WDTs∗ may

be smaller than 2τ ∗. We refer the reader interested in this case to [5, Conjecture 1] and [31].�

A second focus of this paper is the design of distributed algorithms to coordinate the cameras

along a desired trajectory. We consider a distributed scenario in which cameras ci and cj are

allowed to communicate at time t only if |j − i| = 1 (neighboring cameras) and xi(t) = xj(t).

Although conservative, this assumption allows us to design algorithms implementable with many

low-cost communication devices; see Section IV-B. Notice that additional communications cannot

decrease the performance of our algorithms.

Problem 2 (Distributed coordination) For a set of n cameras on a one-dimensional open path,

design a distributed algorithm to coordinate the cameras along a trajectory with minimum

average detection time of smart intruders.

III. EQUAL-WAITING CAMERAS TRAJECTORY AND COORDINATION ALGORITHM

In this section we present our results for Problems 1 and 2. In particular, we propose a cameras

trajectory with performance guarantees for the average detection time, and a distributed algorithm

for the cameras to converge to such a trajectory. We remark that, in general, cameras trajecto-

ries with minimum average detection time can be designed via standard, yet computationally

intensive, optimization techniques. Such an approach is adopted for instance in [32], where the

problem of designing robots’ strategies is cast into an optimal control framework and a gradient-

based algorithm is used to compute a locally optimal solution, and in [33, Chapter 7], where

optimal cameras trajectories are explicitly computed for environments satisfying dmax < 2dmin

and for cameras moving at unit speed. The approach taken in this Section is different, as our

objective is to gain a comprehensive insight into the cameras surveillance problem, and to design

surveillance strategies that are easily implementable and reconfigurable.

The cameras trajectory that we propose can informally be described as follows:

(Equal-waiting trajectory) Each camera continuously sweeps its patrolling window at maximum

speed, and it stops for some waiting time when its f.o.v. reaches an extreme of its patrolling

window. For each camera, the waiting times at its two extremes are equal to each other.

Additionally, the waiting times of each camera are chosen so that the resulting cameras trajectory

is synchronized and periodic. See Fig. 4 for an illustrative explanation. �
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Fig. 4. This figure shows the Equal-waiting trajectory for 4 cameras. Notice that (i) the cameras are synchronized, (ii) the

trajectory is 2τmax-periodic, and (iii) the waiting time of each camera is the same at both its boundaries.

Because we let each camera wait for the same amount of time at the two extremes of its

patrolling window, we call this cameras trajectory Equal-waiting trajectory. An example of

Equal-waiting trajectory is in Fig. 4, and a formal description is in Trajectory 1.

Trajectory 1: Equal-waiting trajectory (camera ci)

Input : τmax, ri, `i, τi, vmax
i ;

Set : ωi(k) = (k + 1)τmax − τi, k = −1, 0, . . . ;

if i is odd then

xi(t) = ri for ωi(k−1) + τi ≤ t ≤ ωi(k)

xi(t) = −vmax
i (t− ωi(k))+ri for ωi(k) ≤ t ≤ ωi(k) + τi

xi(t) = `i for ωi(k) + τi ≤ t ≤ ωi(k+1)

xi(t) = vmax
i (t− ωi(k+1))+`i for ωi(k+1) ≤ t ≤ ωi(k+1) + τi

else if i is even then

xi(t) = `i for ωi(k−1) + τi ≤ t ≤ ωi(k)

xi(t) = vmax
i (t− ωi(k+1))+`i for ωi(k) ≤ t ≤ ωi(k) + τi

xi(t) = ri for ωi(k) + τi ≤ t ≤ ωi(k+1)

xi(t) = −vmax
i (t− ωi(k))+ri for ωi(k+1) ≤ t ≤ ωi(k+1) + τi

As discussed in Section II, the Equal-waiting cameras trajectory is optimal with respect to the

worst-case detection time criterion. Indeed, the Equal-waiting cameras trajectory is synchronized

and 2τmax-periodic. We now characterize the average detection time performance of the Equal-



waiting trajectory. A proof of this result is postponed to the Appendix.

Theorem III.1 (Performance of Equal-waiting trajectories) Let Xeq be the Equal-waiting

trajectory defined in Trajectory 1. Then,

(i) The average detection time of a smart intruder satisfies the lower bound:

ADT∗ ≥ 1

L

n∑
i=1

vmax
i τ 2

i , (5)

(ii) The Equal-waiting trajectory Xeq satisfies

ADT(Xeq) =
1

2

(
τmax +

1

L

n∑
i=1

vmax
i τ 2

i

)
, (6)

(iii) The Equal-waiting trajectory Xeq satisfies

ADT(Xeq)

ADT∗
≤ min

{
τmax + τmin

2τmin ,
(n+ 1)dmax

2dmin

}
, (7)

(iv) If vmax
i = 1 for all i ∈ {1, . . . , n}, then the Equal-waiting trajectory Xeq satisfies

ADT(Xeq)

ADT∗
≤ min

{
dmax + dmin

2dmin ,
3 +
√
n

4

}
. (8)

The following comments are in order. First, the average detection time of the Equal-waiting

trajectory is within a constant factor of the optimal if either τmax/τmin or n are constant. Second,

if all patrolling windows have the same sweeping time, that is τmax = τmin, then our Equal-

waiting trajectory is an optimal solution to Problem 1 (it achieves minimum worst-case and

average detection times). Moreover, our lower bound (5) is tight and holds with equality if

τmax = τmin. Third, the lower bounds in Theorem III.1 are independent of the ordering of the

patrolling windows. Fourth, if

(i) all cameras move at unit speed,

(ii) there exists an index h ∈ {1, . . . , n} such that dh > di for all i ∈ {1, . . . , n} \ {h}, and

(iii) for all i ∈ {1, . . . , n} \ {h} the patrolling windows satisfy

di =
dmax

1 +
√
n
, (9)

then (see the proof of Theorem III.1 and Fig. 5(b))

ADT(Xeq)

ADT∗
=

3 +
√
n

4
. (10)



Fifth and finally, different cameras speeds can be taken into account in our bound (8). In fact,

if vmax
i /vmax

j ≤ C for all i, j ∈ {1, . . . , n} and for some C ∈ R, then (see the proof of Theorem

III.1)

ADT(Xeq)

ADT∗
≤ min

{
C
(
dmax + dmin

)
2dmin ,

2 + C (1 +
√
n)

4

}
.

We now design a distributed feedback algorithm that steers the cameras towards an Equal-

waiting trajectory. Our algorithm to coordinate the cameras along an Equal-waiting trajectory

is described in Algorithm 2, where for convenience we set x0(t) = `1 and xn+1(t) = rn at all

times.

Algorithm 2: Distributed camera coordination along an Equal-waiting trajectory (camera

ci)

Input : τmax, ri, `i, τi, vmax
i ;

Set : ωi = τmax − τi, x0(t) = `1 and xn+1(t) = rn ∀t;

1 Move towards `i with |vi(t)| = vmax
i ;

while True do

2 if xi(t) = xi−1(t) or xi(t) = xi+1(t) then

3 Wait until time t+ ωi;

4 Move towards the opposite boundary with |vi(t)| = vmax
i ;

An informal description of Algorithm 2 follows.

(Distributed coordination) Camera ci moves to `i (line 1) and, if i > 1, it waits until the f.o.v.

of its left neighboring camera ci−1 occupies the same position (line 2). Then, camera ci stops

as specified in Trajectory 1 (line 3), and finally move to ri (line 4). Camera c1 (resp. cn) moves

to r2 (resp. `n−1) as soon as its f.o.v. arrives at `1 (resp. rn). �

It should be observed that, by construction, cameras sweep their patrolling windows (lines 1

and 4), and that the cameras trajectory obtained via Algorithm 2 is synchronized and Equal-

waiting. Moreover, since cameras wait until the f.o.v. of a neighboring camera occupies the

same position (line 3), our coordination algorithm is robust to cameras failures and motion

uncertainties. A related example is in Section IV-A. Regarding the implementation of Algorithm



2, notice that each camera is required to know the endpoints of its patrolling window, its

sweeping time and the maximum sweeping time in the network, and to be able to communicate

with neighboring cameras. The following theorem characterizes the convergence properties of

Algorithm 2, where we write X(t ≥ t̄) to denote the restriction of the trajectory X(t) to the

interval t ∈ [t̄,∞).

Theorem III.2 (Convergence of Algorithm 2) For a set of n cameras with sweeping times

τ1, . . . , τn, let X(t) be the cameras trajectory generated by Algorithm 2. Then, X(t ≥ nτmax) is

an Equal-waiting trajectory.

Proof: Notice that the f.o.v. of camera c1 coincides with the f.o.v. of camera c2 within

time max{2τ1, τ2} ≤ 2τmax. Then, the f.o.v. of camera ci coincides with the f.o.v. of camera

ci+1 within time (i+ 1)τmax. Hence, within time nτmax the cameras trajectory coincides with an

Equal-waiting trajectory in Trajectory 1. The claimed statement follows.

Notice that our cameras trajectory and coordination algorithm are easy to compute, valid for

every number of cameras and environment configuration, and their performance are guaranteed

to be within a bound of the optimum.

IV. NUMERICAL STUDIES AND EXPERIMENTS

In this section we report the results of our numerical studies and experiments. Besides vali-

dating our theory, these results show that our models are accurate, that our algorithms can be

implemented on real hardware, and that our algorithms are robust to sensor noise and model

uncertainties.3

A. Numerical Studies

Five numerical studies are presented in this section. For our first numerical study, we let the

number of cameras n vary from 2 to 50. For each value of n, we generate 50 sets of patrolling

window with lengths {d1, . . . , dn}, where d1 = dmax = 1 m, and di is uniformly distributed

within the interval (0, 1] m , for all i ∈ {2, . . . , n}. For each configuration we let vmax
i = 1 m/s

for all cameras, we design the Equal-waiting trajectory Xeq, and we evaluate the cost ADT(Xeq)

3A video of our experiments can be found at http://www.fabiopas.it/CameraNetworkCoordinationForIntruderDetection.avi.

http://www.fabiopas.it/CameraNetworkCoordinationForIntruderDetection.avi
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Fig. 5. In Fig. 5(a) we report the ratio ADT(Xeq)/ADT∗ as a function of the number of cameras n (blue dots), and the bound

(3 +
√
n)/4 in Theorem III.1 (red dots). For the considered configurations, the bound (dmax +dmin)/(2dmin) is much larger than

the experimental data, and it is not considered here. The lengths di of the patrolling windows are uniformly distributed in the

interval (0, 1], with d1 = dmax = 1. We assume that cameras have unit speed. In Fig. 6 we report the ratio ADT(Xeq)/ADT∗ as

a function of the number of cameras n (blue dots), and the bounds in Theorem III.1 (black dots and red circles). The lengths di

of the patrolling windows are chosen as d1 = dmax = 1 and di = (1 +
√
n)−1 for all i ∈ {2, . . . , n}. As predicted by equation

(10), the performance bound in equation (8) is tightly achieved.

and the lower bound ADT∗ from equation (5). We report the result of this study in Fig. 5(a).

Notice that, when the number of cameras is large and the lengths of the patrolling windows are

uniformly distributed, the bound in (8) is conservative. On the other hand, if the lengths of the

patrolling windows are chosen as in (9), then the bound in (8) is tightly achieved (Fig. 5(b)).

For our second numerical study, we let the number of cameras be fixed (50 cameras), and

we vary the value dmax/dmin between 2 and 25. Specifically, we let d1 = dmax = 1 m, and di,

with i = 2, . . . , 50 be uniformly distributed within the interval [dmin/dmax, 1] m. For each value

of dmax/dmin we generate 50 sets of patrolling windows with lengths {d1, . . . , dn}, compute the

Equal-waiting trajectory Xeq, evaluate the cost ADT(Xeq), and compute the lower bound in

equation (5). The results of this numerical study are reported in Fig. 6, where we observe that

the theoretical bounds derived in Theorem 6 are compatible with the experimental data.

In our third numerical study we validate the effectiveness of our coordination algorithm.

We consider a set of 4 cameras with pre-specified patrolling windows and unit speed. The

cameras trajectory generated by Algorithm 2 is reported in Fig. 7. Observe that our coordination

algorithm drives the cameras towards an Equal-waiting trajectory, and it is robust to failures
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Fig. 6. In this figure we report the ratio ADT(Xeq)/ADT∗ as a function of dmax/dmin (blue dots), and the bounds in Theorem

III.1. For each value of dmax/dmin, the lengths of the patrolling windows are uniformly distributed in the interval [dmin/dmax, 1],

with d1 = dmax = 1. Notice that the theoretical bounds are compatible with the experimental data.

and motion uncertainty. In particular, (i) coordination is achieved for cameras starting at random

initial positions, (ii) the algorithm is robust to temporary cameras failure, and (iii) the average

detection time degrades gracefully in the presence of motion uncertainties.

In our fourth numerical study we adopt our algorithms for the surveillance of a two dimen-

sional corridor by means of cameras with two dimensional f.o.v.s. We consider a corridor of

uniform width 1m and length 100m, that is, Γ2D = [0, 100]× [0, 1]. We place cameras c1, . . . , c6

along the corridor at physical positions (15, 0.5), (35, 0.5), (45, 0.5), (70, 0.5), (80, 0.5), (95, 0.5),

respectively, and at a height of 5m. The cameras patrolling windows are as follows:

(A1)2D = [(`1)2D, (r1)2D]× [0, 1] = [0, 20]× [0, 1]

(A2)2D = [(`2)2D, (r2)2D]× [0, 1] = [20, 40]× [0, 1]

(A3)2D = [(`3)2D, (r3)2D]× [0, 1] = [40, 55]× [0, 1]

(A4)2D = [(`4)2D, (r4)2D]× [0, 1] = [55, 75]× [0, 1]

(A5)2D = [(`5)2D, (r5)2D]× [0, 1] = [75, 90]× [0, 1]

(A6)2D = [(`6)2D, (r6)2D]× [0, 1] = [90, 100]× [0, 1]

We consider the two dimensional ground plane f.o.v. of each camera which is formed by the

intersection of the ground plane with a three dimensional cone originating from the lens of the

camera and spreading out uniformly with angle β (See Fig. 2). Let (xi, yi) be the coordinates
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Fig. 7. In this figure we validate Algorithm 2 for a set of 4 cameras with unit speed. Cameras start at random positions inside

their patrolling window and achieve coordination at time 150. Notice that the algorithm recovers from the temporary failure

of camera c4 between time 340 and 440. Moreover, the coordination performance of the algorithm degrade gracefully in the

presence of noise affecting the cameras motion of the cameras (time 700). In this numerical study the cameras motion noise is

assumed to be normally distributed with mean 0.2 and unit standard deviation.

of the i-th f.o.v., where yi(t) = 0.5 at all times. Finally, an intruder is detected at a certain time

if its position belongs to the f.o.v. of some cameras.

We implement Algorithm 2 as follows. We let each camera sweeps its patrolling window. At

each time t, let x`i(t), x
r
i (t) define the largest rectangle contained in the camera f.o.v., that is, the

smallest and largest values, respectively, such that the set [x`i(t), x
r
i (t)]× [0, 1] is contained in the

i-th f.o.v. at time t. Let t1, t2 satisfy x`i(t1) = (`i)2D and xri (t2) = (ri)2D. Finally, define the one

dimensional patrolling window of camera ci to be Ai = [`i, ri] = [xi(t1), xi(t2)]: this ensures

that the i-th camera sweeps its two dimensional patrolling window by moving its f.o.v. from

(`i, 0.5) to (ri, 0.5), and it allows to use Algorithm 2 for two dimensional patrolling problems.

Let intruders to appear at arbitrary locations and times, in a way that they are not immediately

detected by the cameras. For some values of the angle β, we calculate the average detection times

over 100 simulations, and compare them to the bounds in Theorem III.1 for the corresponding one

dimensional setups. In particular, in Fig. 8 we show the detection times for the two dimensional

problems, and those predicted by the corresponding one dimensional setups for different values

of β. Notice that the worst-case and average detection times for the two dimensional cases satisfy

the bounds in Theorem III.1 for the corresponding one dimensional problems.
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Fig. 8. This figure shows the results from our numerical example using 2 dimensional f.o.v.s.. In this numerical study, we

compute the average detection times over 100 simulations for spread angles β = 6, 10, 15 degrees, and compare the results

to the bounds predicted by Theorem III.2. Fig. 8(a), Fig. 8(b), and Fig. 8(c) show results for β = 6, β = 10, and β = 15,

respectively. The detection times of this simulation are depicted by a solid blue line. Notice that the detection times are smaller

than the upper bound predicted in Section II (dashed black line). The average of the simulated detection times are depicted by a

solid black line. For the considered configuration of cameras, the lower bound ADT∗ in (5) (dashed green line), ADT(Xeq) as

in (6) (dotted red line), and the worst case upper bound (dashed light blue line), which is calculated by multiplying the lower

bound on ADT∗ by the quantity τmax+τmin

2τmin from (7) are reported for the corresponding 1 dimensional configurations.

Finally, in our fifth numerical study we consider a particular configuration of cameras, namely

partially homogeneous f.o.v., and we compare the Equal-waiting trajectory with a cameras

trajectory with minimum average detection time. In particular, consider a set of 4 cameras moving

at unit speed. Let the lengths of their patrolling windows be d1 = 4, d2 = 3, d3 = 3, and d4 = 4,

respectively. As shown in [33], since dmax < 2dmin, a cameras trajectory with minimum average

detection time can be computed in closed form. In Fig. 9 we compare a cameras trajectory with

minimum average detection time with our Equal-waiting trajectory.
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Fig. 9. For a set of 4 cameras with unit velocity, let the lengths of the patrolling windows be d1 = 4, d2 = 3, d3 = 3,

and d4 = 4. In Fig. 9(a) we report a cameras trajectory X∗ with minimum average detection time. The trajectory is computed

as in [33] for the partially homogeneous f.o.v.. In Fig. 9(b) we report the Equal-waiting trajectory Xeq. Notice that the two

trajectories differ in the second and third patrolling windows. It can be verified by using equation (1) and Theorem III.1 that

ADT(X∗) ≈ 3.52 while ADT(Xeq) ≈ 3.79.

Fig. 10. Illustration of the experimental set-up and photos of the hardware.

B. Experiments

In this section we detail the experiments we have conducted to validate our theoretical findings

and numerical results. For our experiments we use a network of six AXIS 213 PTZ (Pan-Tilt-

Zoom) network cameras mounted along a square perimeter. In order to simulate a 1-dimensional

environment, we assign each camera responsibility for surveilling a segment of the perimeter and

assume that camera c1 and camera c6 have no left and right neighbors, respectively. Movement



of the cameras is restricted to a panning motion and is controlled in such a way as to keep

the center of the f.o.v. moving at constant speed. Each camera is equipped with a low-level

detection algorithm in order to alert the user when an intruder enters its f.o.v.. All programming

of the cameras is performed in Python, utilizing the OpenCV computer vision package for image

processing. A diagram of our camera network and a table with our experimental parameters are

shown in Fig. 10 and Table I.

TABLE I

RELEVANT EXPERIMENTAL PARAMETERS.

Camera di(cm) vmax
i (cm/s) τi (s)

c1 624.3 20.8 30.0

c2 290.3 18.0 16.1

c3 291.0 20.6 14.1

c4 619.3 21.1 29.0

c5 331.5 19.0 17.4

c6 232.7 17.3 13.5

In our first experiment, we validate our distributed coordination algorithm to control the motion

of the cameras. Fig. 11 shows the results of our experiment. Notice that the algorithm steers

the cameras into an equal waiting trajectory within time 6τmax as predicted by Theorem III.2.

In fact, since the cameras are all starting the experiment at their left boundary, we see that the

system reaches an equal waiting trajectory in only slightly longer than 5τmax = 150 s. This

is consistent with Theorem III.2, since delays in communication and network bandwidth limits

cause some lagging in our experimental implementation. In order to demonstrate the behavior

of the algorithm under a camera failure, camera c4 is stopped at time t = 600 s. Notice that the

algorithm continues to function despite this temporary hardware failure.

In our second experiment we focus on the worst-case detection time of intruders. We utilize

an Erratic mobile robot from Videre Design to simulate a smart intruder. The robot is equipped

with an on-board computer with Ubuntu Linux and uses Player/Stage in order to interface with

the user and allow for manual steering. We assume that the cameras motion is controlled by



Fig. 11. Cameras trajectories as obtained from our experimental implementation of Algorithm 2. See Table I for the cameras

parameters. Notice that the trajectory is robust to noise, as well as small overshoots and undershoots introduced by hardware

and network uncertainty. These inaccuracies in the individual camera trajectories do not significantly affect coordination. The

cameras trajectory is also robust to momentary failures, as shown at time t ≈ 600 s.

Algorithm 2, and we run 40 trials where the Erratic robot enters the environment at specific

times and locations (we let the Erratic robot move only along the first segment, that is, the

segment with longest sweeping time), and it is manually driven to avoid detection for as long as

possible. We report the results of our second experiment in Fig. 12(a), where we notice that the

theoretical worst-case detection time is a relatively tight bound for the experimental worst-case

detection time.

In our third experiment we focus on the average detection time of intruders. As in our second

experiment, we let the cameras motion be controlled by Algorithm 2, and we use an Erratic robot

as an intruder. We run 40 trials where the Erratic robot enters the environment at random times

and locations, and it is manually driven to avoid detection for as long as possible. We report

the results of our second experiment in Fig. 12(b), where we notice that the theoretical bounds

in Theorem III.1 are compatible with the experimental data (the slight difference is due to the

fact that the theoretical value is calculated by considering all possible intruder initial locations

and times).

We remark that there is a small amount of uncertainty in the execution of the algorithm by the

cameras, resulting in small overshoots and undershoots in the individual camera trajectories. As
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Fig. 12. In Fig. 12(a) we show the detection times for our second experiment, in which smart intruders appear at worst case

times and locations. The detection times of this experiment are depicted by a solid blue line. Notice that the detection times

are smaller than the upper bound predicted in Section II. In Fig. 12(b) we show the detection times for each trial of our third

experiment, in which smart intruders appear at random times and locations. The detection times of this experiment are depicted

by a solid blue line. The solid black line corresponds to the average of the experimental detection times. For the considered

configuration of cameras, the lower bound ADT∗ in (5) (dashed green line), ADT(Xeq) as in (6) (dotted red line), and the

worst case upper bound (dashed light blue line), which is calculated by multiplying the lower bound on ADT∗ by the quantity
τmax+τmin

2τmin from (7) are reported.

we see from Fig. 11, these small gaps, which are to be expected in practical applications, do not

have a significant effect on the performance of the algorithm. We conclude that our experimental

results validate our theory, our camera models, and our assumptions.

V. DISTRIBUTED CAMERAS RECONFIGURATION

In this section we describe an algorithm to reconfigure the cameras patrolling windows to

improve the detection performance, and to allow the camera network to recover from a permanent

camera failure and autonomously adapt to the addition and removal of cameras. We consider a

symmetric gossip communication protocol among cameras, where communication is allowed only

among neighboring cameras, and where each camera updates its patrolling window only after

communication with a neighboring camera. Our reconfiguration algorithm (REC) is described

in Algorithm 3, where Di represents cameras visibility constraints (Ai ⊆ Di).

An informal description of Algorithm 3 follows.



Algorithm 3: Cameras Reconfiguration (Camera ci)

Input : Ai = [`i, ri], Di = [γ
i
, γi], v

max
i ;

Require : {A1, . . . , An} is a partition of Γ;

Set τ̂max
i = τi and qi = ci;

1 Move according to Algorithm 2;

if Communication between cameras ci and ci+1 then

2 Transmit `i, ri, τ̂max
i , qi to ci+1;

3 Receive `i+1, ri+1, τ̂max
i−1, qi+1 from ci+1;

4 Compute m = (`iv
max
i+1 + ri+1v

max
i ) / (vmax

i + vmax
i+1);

5 Update ri and `i+1 as:

ri = `i+1 =


m, if m ∈ [γ

i+1
, γi],

γi, if m > γi,

γ
i+1

, if m < γ
i+1

;

6 Compute new value for τi = (ri − `i)/vmax
i ;

7 case qi ≥ ci
8 if qi+1 > ci+1 then

9 τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i+1};

10 qi = qi+1 = arg max
ci,ci+1,qi+1

{τi, τi+1, τ̂
max
i+1};

11 else if qi+1 ≤ ci+1 then

12 τ̂max
i = τ̂max

i+1 = max{τi, τi+1};

13 qi = qi+1 = arg max
ci,ci+1

{τi, τi+1};

14 case qi < ci

15 if qi+1 ≤ ci+1 then

16 τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i };

17 qi = qi+1 = arg max
ci,ci+1,qi

{τi, τi+1, τ̂
max
i };

18 else if qi+1 > ci+1 then

19 τ̂max
i = τ̂max

i+1 = max{τi, τi+1, τ̂
max
i , τ̂max

i+1};

20 qi = qi+1 = arg max
ci,ci+1,qi,qi+1

{τi, τi+1, τ̂
max
i , τ̂max

i+1};

(Cameras reconfiguration) Camera ci sweeps back and forth at maximum speed its patrolling

windows Ai (line 1), and it updates Ai upon communication with neighboring cameras (lines 2



to 5). The update of Ai is performed so that, as time progresses, the cameras patrolling windows

form a partition of the boundary that minimizes the longest sweeping time (line 5). Following

Algorithm 2, cameras stop for a certain waiting time when their f.o.v. reaches an extreme of

their patrolling window. These waiting times ensure that (i) communication among neighboring

cameras is maintained over time, and (ii) cameras trajectories are synchronized along an Equal-

waiting trajectory. As previously mentioned, in an Equal-waiting trajectory the waiting times at

the two extremes of the patrolling window are equally long. Finally, in order to achieve motion

synchronization, the (time varying) maximum sweeping time τmax is propagated across cameras

during the execution of the algorithm. In order to do so, the auxiliary variable qi is used by the

i-th camera to store the information about the camera associated with τmax (lines 7 to 20). �

For the analysis of Algorithm 3, notice that the patrolling window Ai is updated every time

camera ci communicates with a neighboring camera. Let Ai(k) denote the i-th patrolling window

after k communications of camera ci, and let di(k) be the length of Ai(k). We say that a cameras

trajectory X is asymptotically T -periodic if there exists a duration T ∈ R>0 satisfying

lim
t→∞

X(t+ T )−X(t) = 0.

Theorem V.1 (Convergence of REC) Consider a set of n cameras installed along a one-

dimensional open path Γ. Let A1, . . . , An be the initial patrolling windows, with Ai ⊆ Di

for all i ∈ {1, . . . , n}. Let the cameras implement the Algorithm 3. Then,

(i) for all iterations k ∈ N and for all i ∈ {1, . . . , n} the patrolling window Ai(k) satisfies

Ai(k) ⊆ Di,

(ii) for all iterations k ∈ N the set {A1(k), . . . , An(k)} is a partition of Γ, and

τ ∗ = lim
k→∞

max
i∈{1,...,n}

di(k)

vmax
i

= min
P

max
i∈{1,...,n}

di
vmax
i

,

where P is the set of partitions {A1, . . . , An} of Γ satisfying Ai ⊆ Di for all i ∈ {1, . . . , n}
and di is the length of Ai, and

(iii) the cameras trajectory generated by the REC algorithm is asymptotically 2τ ∗-periodic, and

it converges to an Equal-waiting trajectory.

Proof: In the interest of space, we only sketch the proof. First, notice that the update of ri and

`i is such that Ai belongs to the constraint set Di, so that statement (i) follows. Second notice that
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Fig. 13. Numerical study of REC with n = 5 cameras with maximum speed vmax = 0.67 m/s and patrolling windows constraints.

In Fig. 13(a) we show the cameras trajectories starting from random positions. The dashed lines refer to the trajectories of the

active boundaries. In Fig. 13(b) we report the dynamics of the longest patrolling time τ̂max
i . Notice that τ̂max

i converges to the

optimal value τ∗ = 6.2023 s (dash-dot line).

cameras persistently communicate over time. Indeed, (i) each camera sweeps back and forth its

assigned segment, (ii) cameras wait at their boundaries until communication with a neighboring

camera takes place, and (iii) cameras 1 and n do not stop at `1 and rn, respectively. In particular,

it can be shown that any two neighboring cameras communicate within an interval of finite

length. Then, statement (ii) follows from [30, Theorem IV.1]. Third, because of the persistence

of communication among cameras, the value τmax(k), which is decreasing in k, propagates in

some time Tprop to every camera, for every iteration k. Let t̄ be such that τmax(t̄) = τ ∗ + ε,

for some ε ∈ R>0. Then, after time t̄ + Tprop, the period Ti of ci is within 2ε of 2τ ∗, for all

i ∈ {1, . . . , n}. Statement (iii) follows by letting ε tend to zero.

As stated in Theorem V.1, Algorithm 3 drives the cameras towards an Equal-waiting trajectory.

Then, the detection performance of the cameras trajectory generated by our reconfiguration

algorithm are as in Theorem III.1 with τmax = τ ∗.

We now validate our reconfiguration algorithm via a numerical study. We consider two

scenarios with 5 cameras. All cameras start their trajectory from some initial point in their

patrolling window. In the first scenario (Fig. 13) cameras have the same maximum speed

vmax = 0.67 m/s, and they are not subject to patrolling windows constraints. Relevant parameters
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Fig. 14. Numerical study of REC with n = 5 cameras with non-uniform maximum speeds vmax
i ∼ U [0.45, 0.75] m/s and no

patrolling windows constraints. In Fig. 14(a) we show the cameras trajectories starting from random positions. The dashed lines

refer to the trajectories of the active boundaries. In Fig. 14(b) we report the dynamics of τ̂max
i . Notice that τ̂max

i converges to

the optimal value τ∗ = 6.65 s (dash-dot line).

for this numerical study are reported in Table II. Observe from Fig. 13 that the cameras trajectory

converges to an Equal-waiting trajectory, and that the length of the largest patrolling window

τmax is decreasing and converges to τ ∗ = 6.2023 s.

TABLE II

PARAMETERS AND RESULTS FOR UNIFORM CAMERAS SPEED.

c1 c2 c3 c4 c5

Di [0 4.68] [1.14 7.45] [3.32 12.09] [7.26 18.41] [10.12 20]

Ai(0) [0 2.91] [2.91 5.38] [5.38 9.67] [9.67 14.26] [14.26 20]

Ai(∞) [0 3.72] [3.72 7.45] [7.45 11.63] [11.63 15.82] [15.82 20]

In the second scenario, cameras have different maximum speeds (v1 = 0.61, v2 = 0.57,

v3 = 0.47, v4 = 0.68, v5 = 0.68 m/s), and they are subject to patrolling windows constraints.

Relevant parameters for this numerical study are reported in Table III. As shown in Fig. 14, the



cameras trajectory converges to an Equal-waiting trajectory, and that the length of the largest

patrolling window τmax is decreasing and converges to τ ∗ = 6.65 s.

TABLE III

PARAMETERS AND RESULTS FOR NON-UNIFORM CAMERAS SPEED.

c1 c2 c3 c4 c5

Di [0 20] [0 20] [0 20] [0 20] [0 20]

Ai(0) [0 4] [4 8] [8 12] [12 16] [16 20]

Ai(∞) [0 4.04] [4.04 7.81] [7.81 10.94] [10.94 15.48] [15.48 20]

VI. CONCLUSION

This work studies the problem of coordinating a team of autonomous cameras along a one-

dimensional open path to detect moving intruders. We propose mathematical models of cameras

and intruders, and we define the worst-case and average detection times as performance criteria.

We propose cameras trajectories with performance guarantees, and distributed algorithms to

coordinate the motion of the cameras. Finally, we validate our theoretical findings and show

effectiveness of our algorithms via numerical studies and experiments.

Several extensions to this work are of interest. First, we envision extension to more general

situations, such as tree-like and cyclic environments. Second, additional performance metrics can

be defined to compare different strategies, capturing robustness of the coordination algorithm

and predictability of the surveillance strategy. Third, the possibility of having cameras f.o.v.s

with different and non-constant velocity profiles. Finally, the problem of jointly estimating the

cameras positions and developing a sweeping strategy to prevent intruders from entering and

exiting the environment at strategic locations identified by suitable probability density functions.

APPENDIX

This section contains a proof of Theorem III.1. We start with a lower bound for the average

detection time.



Lemma VI.1 (Lower bound on the average detection time) For a set of n cameras with

maximum velocities vmax
1 , . . . , vmax

n and sweeping times τ1, . . . , τn, the average detection time of

a 2τmax-periodic cameras trajectory X satisfies the lower bound

ADT(X) ≥ 1

L

n∑
i=1

vmax
i τ 2

i .

Proof: Since a smart intruder moves away from the camera f.o.v., the detection time of a

smart intruder appearing at time t and at location p ∈ [`i, ri] satisfies the lower bound∫ ri

`i

Tdet(It,p)− t dp =

∫ di

0

Tdet(It,p)− t dp ≥ Tup,

where di = ri − `i and Tup equals∫ xi(t)

0

xi(t) + 2(di − xi(t))
vmax
i

dp+

∫ di

xi(t)

di − xi(t)
vmax
i

dp,

if the camera ci first detects intruders appearing at locations p ≥ xi(t). Analogously, if the

camera ci first detects intruders appearing at locations p ≤ xi(t)∫ di

0

Tdet(It,p)− t dp ≥ Tdown,

where Tdown equals ∫ xi(t)

0

xi(t)

vmax
i

dp+

∫ di

xi(t)

2xi(t) + (di − xi(t))
vmax
i

dp.

To see this, consider the first case. The detection time of every intruder appearing at location

p > xi(t) is at least (di − xi(t))/v
max (time needed by camera ci to reach ri starting from

xi(t)). Likewise, the detection time of every intruder appearing at location p < xi(t) is at least

(xi(t) + 2(di− xi(t)))/vmax (time needed by ci to reach ri and `i starting from xi(t)). The other

case follows similarly.

It can be verified by simple manipulation that Tup = Tdown = d2
i /v

max. Finally, it follows from

(2) and τi = di/v
max
i that

ADT(X) =
1

TL

∫ T

0

∫
Γ

Tdet(I∗t,p)− t dpdt ≥
1

TL

∫ T

0

n∑
i=1

d2
i

vmax
i

dt =
1

L

n∑
i=1

vmax
i τ 2

i .

It should be observed that the bound in Lemma VI.1 is tight for the case of a single camera,

and it is conservative otherwise (see Fig. 5(a) and 6). We now characterize the average detection

time of the Equal-waiting trajectory.



Lemma VI.2 (Equal-waiting trajectory performance) For a set of n cameras with sweeping

times τ1, . . . , τn, let Xeq be the Equal-waiting trajectory defined in Trajectory 1. Then

ADT(Xeq) =
1

2

(
τmax +

1

L

n∑
i=1

vmax
i τ 2

i

)
. (A-1)

Proof: Observe that the function ADT(Xeq) can be written as

ADT(Xeq) =
1

2τmaxL

n∑
i=1

∫ 2τmax

0

∫ ri

`i

(Tdet(It,p)− t) dpdt.

Let i be odd and recall the description of xi(t) given in Trajectory 1. Due to symmetry, it can

be verified that∫ 2τmax

0

∫ ri

`i

(Tdet(It,p)− t) dpdt = 2

∫ τmax

0

∫ ri

`i

(Tdet(It,p)− t) dpdt

Let 0 ≤ t ≤ τmax−τi, and notice that xi(t) = ri. Observe that Tdet(It,p) = τmax for all p ∈ [`i, ri),

and Tdet(It,p) = 0 for p = ri. Then∫ τmax−τi

0

∫ ri

`i

(Tdet(It,p)− t) dpdt =
(τmax)2 − τ 2

i

2
di . (A-2)

Let τmax − τi ≤ t ≤ τmax. Observe that Tdet(It,p) = τmax for p ∈ [`i, xi(t)), Tdet(It,p) = 0 for

p = x(t), and Tdet(It,p) = 2τmax for p ∈ (xi(t), ri]. Thus,∫ τmax

τmax−τi

∫ ri

`i

(Tdet(It,p)− t) dpdt =

∫ τmax

τmax−τi

∫ xi(t)

`i

(τmax − t) dp+

∫ ri

xi(t)

(2τmax − t) dpdt.

Since xi = ri + (t − (τmax − τi)vmax
i ) (see Trajectory 1), it follows from the above expression

that ∫ τmax

τmax−τi

∫ ri

`i

(Tdet(It,p)− t) dpdt =

∫ τmax

τmax−τi
(2τmax − t)di − τmax(τmax − t)vmax

i dt

=
1

2
τmaxτ 2

i v
max
i +

1

2
diτ

2
i .

(A-3)

The statement follows by combining (A-2) and (A-3).

We now conclude with a proof of Theorem III.1.

Proof of Theorem III.1: From Lemma VI.1 and VI.2 we have

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 v
max
i τ 2

i

=
1

2
+

Lτmax

2
∑n

i=1 diτi
≤ 1

2
+

Lτmax

τmin2
∑n

i=1 di
=
τmax + τmin

2τmin ,



where we have used L =
∑n

i=1 di and τmin ≤ τi for all i ∈ {1, . . . , n}. To show the second

bound notice that

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 diτi
=

1

2
+

L

2
∑n

i=1 di
τi
τmax

≤ 1

2
+

L

2dmin ,

where the last inequality is obtained by letting τi/τ
max → 0 for all i except for one segment

(τi/τmax = 1 for some i, and di ≥ dmin). Since L ≤ ndmax we conclude that

ADT(Xeq)

ADT∗
≤ 1

2
+
ndmax

2dmin ≤
(n+ 1)dmax

2dmin .

We now show the last part of the Theorem. Assume that all cameras move at unit speed and,

without affecting generality, that d1 = dmax. Notice that

ADT(Xeq)

ADT∗
=

1

2
+

Lτmax

2
∑n

i=1 diτi
=

1

2
+

∑n
i=1 d1di

2
∑n

i=1 d
2
i

=
1

2

(
1 +

1 +
∑n

i=2 yi
1 +

∑n
i=2 y

2
i

)
,

where yi = di/d1. Consider the minimization problem

min
{K,x2,...,xn}

K,

subject to 1 +
∑n

i=2 yi ≤ K (1 +
∑n

i=2 y
2
i ) ,

(A-4)

and the associated Lagrangian function [34]

L = K + λ

(
1−K +

n∑
i=2

yi −Ky2
i

)
.

Following standard optimization theory, necessity optimality conditions for the minimization

problem (A-4) are

∂L
∂K

= 0 =⇒ 1− λ
(

1 +
n∑
i=2

y2
i

)
= 0,

∂L
∂yi

= 0 =⇒ λ (1− 2Kyi) = 0, for i ∈ {2, . . . , n},

Complementary slackness: λ

(
1−K +

n∑
i=2

yi −Ky2
i

)
= 0.

From the first and second equations we obtain λ 6= 0 and yi = 1/(2K). Then, the third equation

yields K = (1±√n)/2. Since yi > 0, the statement follows.
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